基于数据驱动模型的矿用车辆疲劳损伤监测

IF 1.4 Q2 ENGINEERING, MULTIDISCIPLINARY
E. Jakobsson, R. Pettersson, E. Frisk, Mattias Krysander
{"title":"基于数据驱动模型的矿用车辆疲劳损伤监测","authors":"E. Jakobsson, R. Pettersson, E. Frisk, Mattias Krysander","doi":"10.36001/IJPHM.2020.V11I1.2595","DOIUrl":null,"url":null,"abstract":"The life and condition of a mine truck frame are related to how the machine is used. Damage from stress cycles is accumulated over time, and measurements throughout the life of the machine are needed to monitor the condition. This results in high demands on the durability of sensors, especially in a harsh mining application. To make a monitoring system cheap and robust, sensors already available on the vehicles are preferred rather than additional strain gauges. The main question in this work is whether the existing on-board sensors can give the required information to estimate stress signals and calculate accumulated damage of the frame. Model complexity requirements and sensors selection are also considered. A final question is whether the accumulated damage can be used for prognostics and to increase reliability. The investigation is performed using a large data set from two vehicles operating in real mine applications. Coherence analysis, ARX-models, and rain flow counting are techniques used. The results show that a low number of available on-board sensors like load cells, damper cylinder positions, and angle transducers can give enough information to recreate some of the stress signals measured. The models are also used to show significant differences in usage by different operators, and its effect on the accumulated damage.","PeriodicalId":42100,"journal":{"name":"International Journal of Prognostics and Health Management","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fatigue Damage Monitoring for Mining Vehicles using Data Driven Models\",\"authors\":\"E. Jakobsson, R. Pettersson, E. Frisk, Mattias Krysander\",\"doi\":\"10.36001/IJPHM.2020.V11I1.2595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The life and condition of a mine truck frame are related to how the machine is used. Damage from stress cycles is accumulated over time, and measurements throughout the life of the machine are needed to monitor the condition. This results in high demands on the durability of sensors, especially in a harsh mining application. To make a monitoring system cheap and robust, sensors already available on the vehicles are preferred rather than additional strain gauges. The main question in this work is whether the existing on-board sensors can give the required information to estimate stress signals and calculate accumulated damage of the frame. Model complexity requirements and sensors selection are also considered. A final question is whether the accumulated damage can be used for prognostics and to increase reliability. The investigation is performed using a large data set from two vehicles operating in real mine applications. Coherence analysis, ARX-models, and rain flow counting are techniques used. The results show that a low number of available on-board sensors like load cells, damper cylinder positions, and angle transducers can give enough information to recreate some of the stress signals measured. The models are also used to show significant differences in usage by different operators, and its effect on the accumulated damage.\",\"PeriodicalId\":42100,\"journal\":{\"name\":\"International Journal of Prognostics and Health Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Prognostics and Health Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/IJPHM.2020.V11I1.2595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/IJPHM.2020.V11I1.2595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

矿用汽车车架的寿命和状况与机器的使用方式有关。应力循环造成的损害随着时间的推移而累积,需要在机器的整个生命周期内进行测量以监测情况。这就对传感器的耐用性提出了很高的要求,特别是在恶劣的采矿应用中。为了使监测系统既便宜又坚固,车辆上已有的传感器比额外的应变计更受欢迎。本工作的主要问题是现有的车载传感器能否提供所需的信息来估计应力信号并计算车架的累积损伤。同时还考虑了模型复杂度要求和传感器的选择。最后一个问题是累积的损伤是否可以用于预测和提高可靠性。调查使用了在实际矿山应用中运行的两辆车的大型数据集。相干分析、arx模型和雨流计数是使用的技术。结果表明,少量可用的车载传感器,如测压元件、阻尼缸位置和角度传感器,可以提供足够的信息来重建一些测量的应力信号。模型还显示了不同操作人员使用的显著差异,以及其对累积损伤的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue Damage Monitoring for Mining Vehicles using Data Driven Models
The life and condition of a mine truck frame are related to how the machine is used. Damage from stress cycles is accumulated over time, and measurements throughout the life of the machine are needed to monitor the condition. This results in high demands on the durability of sensors, especially in a harsh mining application. To make a monitoring system cheap and robust, sensors already available on the vehicles are preferred rather than additional strain gauges. The main question in this work is whether the existing on-board sensors can give the required information to estimate stress signals and calculate accumulated damage of the frame. Model complexity requirements and sensors selection are also considered. A final question is whether the accumulated damage can be used for prognostics and to increase reliability. The investigation is performed using a large data set from two vehicles operating in real mine applications. Coherence analysis, ARX-models, and rain flow counting are techniques used. The results show that a low number of available on-board sensors like load cells, damper cylinder positions, and angle transducers can give enough information to recreate some of the stress signals measured. The models are also used to show significant differences in usage by different operators, and its effect on the accumulated damage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.50%
发文量
18
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信