{"title":"随机场随机表面热力学极限的收敛性","authors":"P. Dario","doi":"10.1214/22-aap1844","DOIUrl":null,"url":null,"abstract":"We study random surfaces with a uniformly convex gradient interaction in the presence of quenched disorder taking the form of a random independent external field. Previous work on the model has focused on proving existence and uniqueness of infinite-volume gradient Gibbs measures with a given tilt and on studying the fluctuations of the surface and its discrete gradient. In this work we focus on the convergence of the thermodynamic limit, establishing convergence of the finite-volume distributions with Dirichlet boundary conditions to translation-covariant (gradient) Gibbs measures. Specifically, it is shown that, when the law of the random field has finite second moment and is symmetric, the distribution of the gradient of the surface converges in dimensions $d\\geq4$ while the distribution of the surface itself converges in dimensions $d\\geq 5$. Moreover, a power-law upper bound on the rate of convergence in Wasserstein distance is obtained. The results partially answer a question discussed by Cotar and K\\\"ulske","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Convergence to the thermodynamic limit for random-field random surfaces\",\"authors\":\"P. Dario\",\"doi\":\"10.1214/22-aap1844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study random surfaces with a uniformly convex gradient interaction in the presence of quenched disorder taking the form of a random independent external field. Previous work on the model has focused on proving existence and uniqueness of infinite-volume gradient Gibbs measures with a given tilt and on studying the fluctuations of the surface and its discrete gradient. In this work we focus on the convergence of the thermodynamic limit, establishing convergence of the finite-volume distributions with Dirichlet boundary conditions to translation-covariant (gradient) Gibbs measures. Specifically, it is shown that, when the law of the random field has finite second moment and is symmetric, the distribution of the gradient of the surface converges in dimensions $d\\\\geq4$ while the distribution of the surface itself converges in dimensions $d\\\\geq 5$. Moreover, a power-law upper bound on the rate of convergence in Wasserstein distance is obtained. The results partially answer a question discussed by Cotar and K\\\\\\\"ulske\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1844\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1844","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Convergence to the thermodynamic limit for random-field random surfaces
We study random surfaces with a uniformly convex gradient interaction in the presence of quenched disorder taking the form of a random independent external field. Previous work on the model has focused on proving existence and uniqueness of infinite-volume gradient Gibbs measures with a given tilt and on studying the fluctuations of the surface and its discrete gradient. In this work we focus on the convergence of the thermodynamic limit, establishing convergence of the finite-volume distributions with Dirichlet boundary conditions to translation-covariant (gradient) Gibbs measures. Specifically, it is shown that, when the law of the random field has finite second moment and is symmetric, the distribution of the gradient of the surface converges in dimensions $d\geq4$ while the distribution of the surface itself converges in dimensions $d\geq 5$. Moreover, a power-law upper bound on the rate of convergence in Wasserstein distance is obtained. The results partially answer a question discussed by Cotar and K\"ulske
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.