耦合多相多孔介质动力学分析的时域边界元发展理论

IF 1 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
P. Maghoul, B. Gatmiri
{"title":"耦合多相多孔介质动力学分析的时域边界元发展理论","authors":"P. Maghoul, B. Gatmiri","doi":"10.1142/S175697371750007X","DOIUrl":null,"url":null,"abstract":"This paper presents an advanced formulation of the time-domain two-dimensional (2D) boundary element method (BEM) for an elastic, homogeneous unsaturated soil subjected to dynamic loadings. Unlike the usual time-domain BEM, the present formulation applies a convolution quadrature which requires only the Laplace-domain instead of the time-domain fundamental solutions. The coupled equations governing the dynamic behavior of unsaturated soils ignoring contributions of the inertia effects of the fluids (water and air) are derived based on the poromechanics theory within the framework of a suction-based mathematical model. In this formulation, the solid skeleton displacements ui, water pressure pw and air pressure pa are presumed to be independent variables. The fundamental solutions in Laplace transformed-domain for such a dynamic u−pw−pa theory have been obtained previously by authors. Then, the BE formulation in time is derived after regularization by partial integrations and time and spatial discretization...","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":"08 1","pages":"1750007"},"PeriodicalIF":1.0000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S175697371750007X","citationCount":"3","resultStr":"{\"title\":\"Theory of a Time Domain Boundary Element Development for the Dynamic Analysis of Coupled Multiphase Porous Media\",\"authors\":\"P. Maghoul, B. Gatmiri\",\"doi\":\"10.1142/S175697371750007X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an advanced formulation of the time-domain two-dimensional (2D) boundary element method (BEM) for an elastic, homogeneous unsaturated soil subjected to dynamic loadings. Unlike the usual time-domain BEM, the present formulation applies a convolution quadrature which requires only the Laplace-domain instead of the time-domain fundamental solutions. The coupled equations governing the dynamic behavior of unsaturated soils ignoring contributions of the inertia effects of the fluids (water and air) are derived based on the poromechanics theory within the framework of a suction-based mathematical model. In this formulation, the solid skeleton displacements ui, water pressure pw and air pressure pa are presumed to be independent variables. The fundamental solutions in Laplace transformed-domain for such a dynamic u−pw−pa theory have been obtained previously by authors. Then, the BE formulation in time is derived after regularization by partial integrations and time and spatial discretization...\",\"PeriodicalId\":43242,\"journal\":{\"name\":\"Journal of Multiscale Modelling\",\"volume\":\"08 1\",\"pages\":\"1750007\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S175697371750007X\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multiscale Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S175697371750007X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S175697371750007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种适用于动态荷载作用下弹性均质非饱和土的时域二维边界元法的高级公式。与通常的时域边界元法不同,本公式应用了仅需要拉普拉斯域而不需要时域基本解的卷积求积。基于孔隙力学理论,在基于吸力的数学模型框架内,导出了控制非饱和土动力学行为的耦合方程,忽略了流体(水和空气)的惯性效应。在该公式中,假定固体骨架位移ui、水压pw和气压pa是自变量。作者以前已经获得了这种动态u−pw−pa理论在拉普拉斯变换域中的基本解。然后,通过部分积分和时间和空间离散化正则化,导出了时间上的BE公式。。。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theory of a Time Domain Boundary Element Development for the Dynamic Analysis of Coupled Multiphase Porous Media
This paper presents an advanced formulation of the time-domain two-dimensional (2D) boundary element method (BEM) for an elastic, homogeneous unsaturated soil subjected to dynamic loadings. Unlike the usual time-domain BEM, the present formulation applies a convolution quadrature which requires only the Laplace-domain instead of the time-domain fundamental solutions. The coupled equations governing the dynamic behavior of unsaturated soils ignoring contributions of the inertia effects of the fluids (water and air) are derived based on the poromechanics theory within the framework of a suction-based mathematical model. In this formulation, the solid skeleton displacements ui, water pressure pw and air pressure pa are presumed to be independent variables. The fundamental solutions in Laplace transformed-domain for such a dynamic u−pw−pa theory have been obtained previously by authors. Then, the BE formulation in time is derived after regularization by partial integrations and time and spatial discretization...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multiscale Modelling
Journal of Multiscale Modelling MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信