美国东北部多持续时间强降水记录的天气类型:1895–2017

IF 2.6 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
C. Crossett, L. Dupigny-Giroux, K. Kunkel, A. Betts, A. Bomblies
{"title":"美国东北部多持续时间强降水记录的天气类型:1895–2017","authors":"C. Crossett, L. Dupigny-Giroux, K. Kunkel, A. Betts, A. Bomblies","doi":"10.1175/jamc-d-22-0091.1","DOIUrl":null,"url":null,"abstract":"\nMuch of the previous research on total and heavy precipitation trends across the Northeastern US (hereafter Northeast) used daily precipitation totals over relatively short periods of record, which do not capture the full range of climate variability and change. Less well understood are the characteristics of long-term changes and synoptic patterns in longer-duration heavy precipitation events across the Northeast. A multi-duration (1, 2, 3, 7, 14, and 30 days), multi-return interval (2, 5, 10, and 50 years) precipitation dataset was used to diagnose changes in various types of precipitation events across the Northeast from 1895 to 2017. Increasing trends were found in all duration and return-interval event combinations with the rarest, longest duration events increasing at faster rates than more frequent, shorter duration ones. Daily 850-hPa geopotential height patterns associated with precipitation events were extracted from Rotated Principal Component Analysis and k-means clustering analysis, which allowed for the main synoptic types present, as well as their structure and evolution to be analyzed. The daily synoptic patterns thus identified were found to be similar across all durations and return-intervals and included: coastal low (Nor’easters, tropical cyclones, and predecessor rain events), deep trough, east coast trough, zonal, and high pressure patterns.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synoptic-Typing of Multi-Duration, Heavy Precipitation Records in the Northeastern United States: 1895–2017\",\"authors\":\"C. Crossett, L. Dupigny-Giroux, K. Kunkel, A. Betts, A. Bomblies\",\"doi\":\"10.1175/jamc-d-22-0091.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nMuch of the previous research on total and heavy precipitation trends across the Northeastern US (hereafter Northeast) used daily precipitation totals over relatively short periods of record, which do not capture the full range of climate variability and change. Less well understood are the characteristics of long-term changes and synoptic patterns in longer-duration heavy precipitation events across the Northeast. A multi-duration (1, 2, 3, 7, 14, and 30 days), multi-return interval (2, 5, 10, and 50 years) precipitation dataset was used to diagnose changes in various types of precipitation events across the Northeast from 1895 to 2017. Increasing trends were found in all duration and return-interval event combinations with the rarest, longest duration events increasing at faster rates than more frequent, shorter duration ones. Daily 850-hPa geopotential height patterns associated with precipitation events were extracted from Rotated Principal Component Analysis and k-means clustering analysis, which allowed for the main synoptic types present, as well as their structure and evolution to be analyzed. The daily synoptic patterns thus identified were found to be similar across all durations and return-intervals and included: coastal low (Nor’easters, tropical cyclones, and predecessor rain events), deep trough, east coast trough, zonal, and high pressure patterns.\",\"PeriodicalId\":15027,\"journal\":{\"name\":\"Journal of Applied Meteorology and Climatology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology and Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jamc-d-22-0091.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-22-0091.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

以前关于美国东北部(以下简称东北)总降水和强降水趋势的大部分研究都使用了相对较短记录期间的日降水总量,这并没有捕捉到气候变率和变化的全部范围。对东北地区持续时间较长的强降水事件的长期变化特征和天气模式了解较少。利用多历时(1、2、3、7、14和30天)、多回归间隔(2、5、10和50年)降水数据集,诊断了1895 - 2017年东北地区各类降水事件的变化。在所有持续时间和返回间隔的事件组合中,最罕见、持续时间最长的事件的增长速度快于更频繁、持续时间较短的事件。利用旋转主成分分析和k-means聚类分析提取了与降水事件相关的850-hPa日位势高度型,分析了降水事件的主要天气类型及其结构和演变。由此确定的日天气模式在所有持续时间和返回间隔中都是相似的,包括:沿海低压(东北风、热带气旋和前雨事件)、深槽、东海岸槽、纬向和高压模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synoptic-Typing of Multi-Duration, Heavy Precipitation Records in the Northeastern United States: 1895–2017
Much of the previous research on total and heavy precipitation trends across the Northeastern US (hereafter Northeast) used daily precipitation totals over relatively short periods of record, which do not capture the full range of climate variability and change. Less well understood are the characteristics of long-term changes and synoptic patterns in longer-duration heavy precipitation events across the Northeast. A multi-duration (1, 2, 3, 7, 14, and 30 days), multi-return interval (2, 5, 10, and 50 years) precipitation dataset was used to diagnose changes in various types of precipitation events across the Northeast from 1895 to 2017. Increasing trends were found in all duration and return-interval event combinations with the rarest, longest duration events increasing at faster rates than more frequent, shorter duration ones. Daily 850-hPa geopotential height patterns associated with precipitation events were extracted from Rotated Principal Component Analysis and k-means clustering analysis, which allowed for the main synoptic types present, as well as their structure and evolution to be analyzed. The daily synoptic patterns thus identified were found to be similar across all durations and return-intervals and included: coastal low (Nor’easters, tropical cyclones, and predecessor rain events), deep trough, east coast trough, zonal, and high pressure patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Meteorology and Climatology
Journal of Applied Meteorology and Climatology 地学-气象与大气科学
CiteScore
5.10
自引率
6.70%
发文量
97
审稿时长
3 months
期刊介绍: The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信