Paulo G. C. Martins, Kesiany M. de Souza, Rene F. Boschi, Leonardo H. Gouvêa, C. Martins
{"title":"实验室规模混合火箭发动机中石蜡/乙醇燃料混合物的性能比较","authors":"Paulo G. C. Martins, Kesiany M. de Souza, Rene F. Boschi, Leonardo H. Gouvêa, C. Martins","doi":"10.2514/1.b39051","DOIUrl":null,"url":null,"abstract":"This paper discusses the performance characteristics of a paraffin-based blend of liquid ethanol with paraffin as compared to pure paraffin in a hybrid rocket motor. Since the disclosure of the high regression rates of liquefying fuels as compared to classic fuels such as hydroxyl-terminated polybutadiene (HTPB), many studies using paraffin have been reported in the literature. Although pure paraffin regresses three to four times faster than HTPB, it is not an ideal fuel for launcher applications for the following reasons: it does not provide the optimum mechanical strength, it may suffer from combustion instability, and it offers low combustion efficiency. The proposed blend is biphasic, with drops of liquid ethanol trapped in a paraffin binder; and a nonionic surfactant was employed to emulsify the ethanol into paraffin wax. The results indicated that at a mean prefiring [Formula: see text] of 0.6 and a [Formula: see text] of 60, both the P95E05 and P90E10 fuels demonstrated no significant statistical difference compared to pure paraffin in terms of thrust, specific impulse, fuel mass flow rate, characteristic velocity, and combustion efficiency. However, the P95E05 and P90E10 fuels did show damping in the pressure oscillations relative to paraffin, indicating a reduction in the low-frequency combustion instability observed in the ballistic responses of paraffin.","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Comparison of Paraffin/Ethanol Fuel Blends in a Laboratory-Scale Hybrid Rocket Motor\",\"authors\":\"Paulo G. C. Martins, Kesiany M. de Souza, Rene F. Boschi, Leonardo H. Gouvêa, C. Martins\",\"doi\":\"10.2514/1.b39051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the performance characteristics of a paraffin-based blend of liquid ethanol with paraffin as compared to pure paraffin in a hybrid rocket motor. Since the disclosure of the high regression rates of liquefying fuels as compared to classic fuels such as hydroxyl-terminated polybutadiene (HTPB), many studies using paraffin have been reported in the literature. Although pure paraffin regresses three to four times faster than HTPB, it is not an ideal fuel for launcher applications for the following reasons: it does not provide the optimum mechanical strength, it may suffer from combustion instability, and it offers low combustion efficiency. The proposed blend is biphasic, with drops of liquid ethanol trapped in a paraffin binder; and a nonionic surfactant was employed to emulsify the ethanol into paraffin wax. The results indicated that at a mean prefiring [Formula: see text] of 0.6 and a [Formula: see text] of 60, both the P95E05 and P90E10 fuels demonstrated no significant statistical difference compared to pure paraffin in terms of thrust, specific impulse, fuel mass flow rate, characteristic velocity, and combustion efficiency. However, the P95E05 and P90E10 fuels did show damping in the pressure oscillations relative to paraffin, indicating a reduction in the low-frequency combustion instability observed in the ballistic responses of paraffin.\",\"PeriodicalId\":16903,\"journal\":{\"name\":\"Journal of Propulsion and Power\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Propulsion and Power\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.b39051\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Propulsion and Power","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.b39051","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Performance Comparison of Paraffin/Ethanol Fuel Blends in a Laboratory-Scale Hybrid Rocket Motor
This paper discusses the performance characteristics of a paraffin-based blend of liquid ethanol with paraffin as compared to pure paraffin in a hybrid rocket motor. Since the disclosure of the high regression rates of liquefying fuels as compared to classic fuels such as hydroxyl-terminated polybutadiene (HTPB), many studies using paraffin have been reported in the literature. Although pure paraffin regresses three to four times faster than HTPB, it is not an ideal fuel for launcher applications for the following reasons: it does not provide the optimum mechanical strength, it may suffer from combustion instability, and it offers low combustion efficiency. The proposed blend is biphasic, with drops of liquid ethanol trapped in a paraffin binder; and a nonionic surfactant was employed to emulsify the ethanol into paraffin wax. The results indicated that at a mean prefiring [Formula: see text] of 0.6 and a [Formula: see text] of 60, both the P95E05 and P90E10 fuels demonstrated no significant statistical difference compared to pure paraffin in terms of thrust, specific impulse, fuel mass flow rate, characteristic velocity, and combustion efficiency. However, the P95E05 and P90E10 fuels did show damping in the pressure oscillations relative to paraffin, indicating a reduction in the low-frequency combustion instability observed in the ballistic responses of paraffin.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of aerospace propulsion and power through the dissemination of original archival papers contributing to advancements in airbreathing, electric, and advanced propulsion; solid and liquid rockets; fuels and propellants; power generation and conversion for aerospace vehicles; and the application of aerospace science and technology to terrestrial energy devices and systems. It is intended to provide readers of the Journal, with primary interests in propulsion and power, access to papers spanning the range from research through development to applications. Papers in these disciplines and the sciences of combustion, fluid mechanics, and solid mechanics as directly related to propulsion and power are solicited.