Natalie Baillargeon, G. Pold, S. Natali, S. Sistla
{"title":"低地冻土带植物化学计量在火灾发生后的几十年里具有一定的弹性,尽管群落结构发生了实质性和持续的变化","authors":"Natalie Baillargeon, G. Pold, S. Natali, S. Sistla","doi":"10.1080/15230430.2022.2121246","DOIUrl":null,"url":null,"abstract":"ABSTRACT The Arctic is experiencing the greatest increase in average surface temperature globally, which is projected to amplify wildfire frequency and severity. Wildfire alters the biogeochemical characteristics of arctic ecosystems. However, the extent of these changes over time—particularly with regard to plant stoichiometries relative to community structure—is not well documented. Four years after the Yukon-Kuskokwim Delta, Alaska, experienced its largest fire season, aboveground plant and lichen biomass was harvested across a gradient of burn history: unburned (“reference”), 2015 burn (“recent burn”), and 1972 burn (“historic burn”) to assess the resilience of tundra plant communities to fire disturbance. Fire reduced aboveground biomass in the recent burn; early recovery was characterized by evergreen shrub and graminoid dominance. In the historic burn, aboveground biomass approached reference conditions despite a sustained reduction of lichen biomass. Although total plant and lichen carbon (C) and nitrogen (N) were reduced immediately following fire, N stocks recovered to a greater degree—reducing community-level C:N. Notably, at the species level, N enrichment was observed only in the recent burn. Yet, community restructuring persisted for decades following fire, reflecting a sustained reduction in N-poor lichens relative to more N-rich vascular plant species.","PeriodicalId":8391,"journal":{"name":"Arctic, Antarctic, and Alpine Research","volume":"54 1","pages":"525 - 536"},"PeriodicalIF":1.6000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lowland tundra plant stoichiometry is somewhat resilient decades following fire despite substantial and sustained shifts in community structure\",\"authors\":\"Natalie Baillargeon, G. Pold, S. Natali, S. Sistla\",\"doi\":\"10.1080/15230430.2022.2121246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The Arctic is experiencing the greatest increase in average surface temperature globally, which is projected to amplify wildfire frequency and severity. Wildfire alters the biogeochemical characteristics of arctic ecosystems. However, the extent of these changes over time—particularly with regard to plant stoichiometries relative to community structure—is not well documented. Four years after the Yukon-Kuskokwim Delta, Alaska, experienced its largest fire season, aboveground plant and lichen biomass was harvested across a gradient of burn history: unburned (“reference”), 2015 burn (“recent burn”), and 1972 burn (“historic burn”) to assess the resilience of tundra plant communities to fire disturbance. Fire reduced aboveground biomass in the recent burn; early recovery was characterized by evergreen shrub and graminoid dominance. In the historic burn, aboveground biomass approached reference conditions despite a sustained reduction of lichen biomass. Although total plant and lichen carbon (C) and nitrogen (N) were reduced immediately following fire, N stocks recovered to a greater degree—reducing community-level C:N. Notably, at the species level, N enrichment was observed only in the recent burn. Yet, community restructuring persisted for decades following fire, reflecting a sustained reduction in N-poor lichens relative to more N-rich vascular plant species.\",\"PeriodicalId\":8391,\"journal\":{\"name\":\"Arctic, Antarctic, and Alpine Research\",\"volume\":\"54 1\",\"pages\":\"525 - 536\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arctic, Antarctic, and Alpine Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/15230430.2022.2121246\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arctic, Antarctic, and Alpine Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/15230430.2022.2121246","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Lowland tundra plant stoichiometry is somewhat resilient decades following fire despite substantial and sustained shifts in community structure
ABSTRACT The Arctic is experiencing the greatest increase in average surface temperature globally, which is projected to amplify wildfire frequency and severity. Wildfire alters the biogeochemical characteristics of arctic ecosystems. However, the extent of these changes over time—particularly with regard to plant stoichiometries relative to community structure—is not well documented. Four years after the Yukon-Kuskokwim Delta, Alaska, experienced its largest fire season, aboveground plant and lichen biomass was harvested across a gradient of burn history: unburned (“reference”), 2015 burn (“recent burn”), and 1972 burn (“historic burn”) to assess the resilience of tundra plant communities to fire disturbance. Fire reduced aboveground biomass in the recent burn; early recovery was characterized by evergreen shrub and graminoid dominance. In the historic burn, aboveground biomass approached reference conditions despite a sustained reduction of lichen biomass. Although total plant and lichen carbon (C) and nitrogen (N) were reduced immediately following fire, N stocks recovered to a greater degree—reducing community-level C:N. Notably, at the species level, N enrichment was observed only in the recent burn. Yet, community restructuring persisted for decades following fire, reflecting a sustained reduction in N-poor lichens relative to more N-rich vascular plant species.
期刊介绍:
The mission of Arctic, Antarctic, and Alpine Research (AAAR) is to advance understanding of cold region environments by publishing original scientific research from past, present and future high-latitude and mountain regions. Rapid environmental change occurring in cold regions today highlights the global importance of this research. AAAR publishes peer-reviewed interdisciplinary papers including original research papers, short communications and review articles. Many of these papers synthesize a variety of disciplines including ecology, climatology, geomorphology, glaciology, hydrology, paleoceanography, biogeochemistry, and social science. Papers may be uni- or multidisciplinary but should have interdisciplinary appeal. Special thematic issues and proceedings are encouraged. The journal receives contributions from a diverse group of international authors from academia, government agencies, and land managers. In addition the journal publishes opinion pieces, book reviews and in memoria. AAAR is associated with the Institute of Arctic and Alpine Research (INSTAAR) the oldest active research institute at the University of Colorado Boulder.