最优超额损失再保险-障碍股利投资策略

Q4 Engineering
Zongqi Sun, Peng Yang, Jing Wu, Yang Yang
{"title":"最优超额损失再保险-障碍股利投资策略","authors":"Zongqi Sun, Peng Yang, Jing Wu, Yang Yang","doi":"10.3724/sp.j.1249.2022.06719","DOIUrl":null,"url":null,"abstract":": The optimal barrier dividend problem under excess of loss reinsurance strategy has rarely been studied so far. We combine the risk factors such as market friction and terminal residual value with risk investment and risk control strategy, and study the resulting optimal investment - excess of loss reinsurance - barrier dividend problem. Based on the dynamic programming principle, we establish the Hamilton - Jacobi - Bellman equation, and obtain the explicit solutions for the optimal investment - excess of loss reinsurance strategy. The optimal dividend function is solved by the differential - integral method. The existence and uniqueness of the optimal dividend boundary is proved.","PeriodicalId":35396,"journal":{"name":"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal excess of loss reinsurance-barrier dividend strategies with investment\",\"authors\":\"Zongqi Sun, Peng Yang, Jing Wu, Yang Yang\",\"doi\":\"10.3724/sp.j.1249.2022.06719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The optimal barrier dividend problem under excess of loss reinsurance strategy has rarely been studied so far. We combine the risk factors such as market friction and terminal residual value with risk investment and risk control strategy, and study the resulting optimal investment - excess of loss reinsurance - barrier dividend problem. Based on the dynamic programming principle, we establish the Hamilton - Jacobi - Bellman equation, and obtain the explicit solutions for the optimal investment - excess of loss reinsurance strategy. The optimal dividend function is solved by the differential - integral method. The existence and uniqueness of the optimal dividend boundary is proved.\",\"PeriodicalId\":35396,\"journal\":{\"name\":\"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3724/sp.j.1249.2022.06719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/sp.j.1249.2022.06719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

:超额损失再保险策略下的最优障碍分红问题迄今为止很少被研究。我们将市场摩擦、终端剩余价值等风险因素与风险投资和风险控制策略相结合,研究由此产生的最优投资-超额损失再保险-障碍分红问题。基于动态规划原理,建立了Hamilton-Jacobi-Bellman方程,得到了最优投资超额损失再保险策略的显式解。最优被除数函数采用微分积分法求解。证明了最优分红边界的存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal excess of loss reinsurance-barrier dividend strategies with investment
: The optimal barrier dividend problem under excess of loss reinsurance strategy has rarely been studied so far. We combine the risk factors such as market friction and terminal residual value with risk investment and risk control strategy, and study the resulting optimal investment - excess of loss reinsurance - barrier dividend problem. Based on the dynamic programming principle, we establish the Hamilton - Jacobi - Bellman equation, and obtain the explicit solutions for the optimal investment - excess of loss reinsurance strategy. The optimal dividend function is solved by the differential - integral method. The existence and uniqueness of the optimal dividend boundary is proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信