J. Drábiková, S. Fintová, P. Doležal, J. Wasserbauer, Z. Florková
{"title":"非常规氟化物转化涂层处理生物可降解ZE41镁合金的耐蚀性","authors":"J. Drábiková, S. Fintová, P. Doležal, J. Wasserbauer, Z. Florková","doi":"10.2478/kom-2019-0018","DOIUrl":null,"url":null,"abstract":"Abstract Magnesium based alloys are very promising material to be used mainly for biodegradable implants in medical applications. However, due to their very low corrosion resistance in the environment of in vivo is their use limited. Increase of the corrosion resistance of magnesium alloys in vivo can be achieved, for example, by a suitable choice of surface treatment while the biocompatibility must be ensured. Fluoride conversion coatings meet these requirements. Unconventional fluoride conversion coating was prepared on ZE41 magnesium alloy by dipping the magnesium alloy into the Na[BF4] salt melt at 450 °C for 0.5; 2 and 8 h. The morphology and thickness of the prepared fluoride conversion coatings were investigated as well as the corrosion resistance of the treated and untreated ZE41 magnesium alloy specimens. The corrosion resistance of the untreated and treated ZE41 magnesium alloy was investigated using electrochemical impedance spectroscopy in the environment of the simulated body fluids at 37 ± 2 °C. The obtained results showed a positive influence of the fluoride conversion coating on the corrosion resistance of the ZE41 magnesium alloy.","PeriodicalId":17911,"journal":{"name":"Koroze a ochrana materialu","volume":"63 1","pages":"138 - 147"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion resistance of the biodegradable ZE41 magnesium alloy treated by unconventional fluoride conversion coating\",\"authors\":\"J. Drábiková, S. Fintová, P. Doležal, J. Wasserbauer, Z. Florková\",\"doi\":\"10.2478/kom-2019-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Magnesium based alloys are very promising material to be used mainly for biodegradable implants in medical applications. However, due to their very low corrosion resistance in the environment of in vivo is their use limited. Increase of the corrosion resistance of magnesium alloys in vivo can be achieved, for example, by a suitable choice of surface treatment while the biocompatibility must be ensured. Fluoride conversion coatings meet these requirements. Unconventional fluoride conversion coating was prepared on ZE41 magnesium alloy by dipping the magnesium alloy into the Na[BF4] salt melt at 450 °C for 0.5; 2 and 8 h. The morphology and thickness of the prepared fluoride conversion coatings were investigated as well as the corrosion resistance of the treated and untreated ZE41 magnesium alloy specimens. The corrosion resistance of the untreated and treated ZE41 magnesium alloy was investigated using electrochemical impedance spectroscopy in the environment of the simulated body fluids at 37 ± 2 °C. The obtained results showed a positive influence of the fluoride conversion coating on the corrosion resistance of the ZE41 magnesium alloy.\",\"PeriodicalId\":17911,\"journal\":{\"name\":\"Koroze a ochrana materialu\",\"volume\":\"63 1\",\"pages\":\"138 - 147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Koroze a ochrana materialu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/kom-2019-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Koroze a ochrana materialu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/kom-2019-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Corrosion resistance of the biodegradable ZE41 magnesium alloy treated by unconventional fluoride conversion coating
Abstract Magnesium based alloys are very promising material to be used mainly for biodegradable implants in medical applications. However, due to their very low corrosion resistance in the environment of in vivo is their use limited. Increase of the corrosion resistance of magnesium alloys in vivo can be achieved, for example, by a suitable choice of surface treatment while the biocompatibility must be ensured. Fluoride conversion coatings meet these requirements. Unconventional fluoride conversion coating was prepared on ZE41 magnesium alloy by dipping the magnesium alloy into the Na[BF4] salt melt at 450 °C for 0.5; 2 and 8 h. The morphology and thickness of the prepared fluoride conversion coatings were investigated as well as the corrosion resistance of the treated and untreated ZE41 magnesium alloy specimens. The corrosion resistance of the untreated and treated ZE41 magnesium alloy was investigated using electrochemical impedance spectroscopy in the environment of the simulated body fluids at 37 ± 2 °C. The obtained results showed a positive influence of the fluoride conversion coating on the corrosion resistance of the ZE41 magnesium alloy.