M. Naseer, K. Kamal, M. Abid, A. Iqbal, Hamdullah Khan, Ch. Muhammad Zubair, Sagar Kumar, T. Ratlamwala, Malik Muhammad Nauman
{"title":"厌氧消化池、蓄热单元和太阳能集热器一体化固体氧化物燃料电池的建模与仿真:一个净零排放系统","authors":"M. Naseer, K. Kamal, M. Abid, A. Iqbal, Hamdullah Khan, Ch. Muhammad Zubair, Sagar Kumar, T. Ratlamwala, Malik Muhammad Nauman","doi":"10.1155/2022/8790631","DOIUrl":null,"url":null,"abstract":"Energy production from clean and green sources is one of the eminent challenges to mankind. Overall, all industrial sectors contribute to CO2 emission, but the energy production sector is a major contributor. In recent years, CO2 emissions from the energy sector have increased by 1.7%. Therefore, the development of alternative energy production sources is a pivot for researchers. In this regard, the fuel cell has been a promising technology but still accompanied by the release of greenhouse gasses but relatively lower than that of fossil fuels. The integration of the fuel cell to the biogas has been a promising factor to reduce emissions. This study contributes to the same by producing a self-sustaining biogas-fuel cell multigeneration system for cold areas. Mathematical modeling of all complements of the system, i.e., anaerobic digester, solid oxide fuel cell, solar collector, and thermal storage system, is provided. MATLAB/Simulink environment is used for simulation of the system. The proposed system will use an anaerobic digester for methane production. Hence, produced methane will be used to power solid oxide fuel cell. The electricity of the fuel cell will power the residential place, and the thermal potential of the exhaust will be stored. In daylight, the solar thermal potential will be utilized for district heating. In the absence of solar light, stored thermal energy will be used for district heating and hot water supply. Additionally, the CO2 emitted from the system will not be released into the environment but stored for industrial purposes. The best area of application of the proposed system is cold areas such as Switzerland.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Simulation of Solid Oxide Fuel Cell Integrated with Anaerobic Digester, Thermal Storage Unit and Solar Collector: A Net Zero Emission System\",\"authors\":\"M. Naseer, K. Kamal, M. Abid, A. Iqbal, Hamdullah Khan, Ch. Muhammad Zubair, Sagar Kumar, T. Ratlamwala, Malik Muhammad Nauman\",\"doi\":\"10.1155/2022/8790631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy production from clean and green sources is one of the eminent challenges to mankind. Overall, all industrial sectors contribute to CO2 emission, but the energy production sector is a major contributor. In recent years, CO2 emissions from the energy sector have increased by 1.7%. Therefore, the development of alternative energy production sources is a pivot for researchers. In this regard, the fuel cell has been a promising technology but still accompanied by the release of greenhouse gasses but relatively lower than that of fossil fuels. The integration of the fuel cell to the biogas has been a promising factor to reduce emissions. This study contributes to the same by producing a self-sustaining biogas-fuel cell multigeneration system for cold areas. Mathematical modeling of all complements of the system, i.e., anaerobic digester, solid oxide fuel cell, solar collector, and thermal storage system, is provided. MATLAB/Simulink environment is used for simulation of the system. The proposed system will use an anaerobic digester for methane production. Hence, produced methane will be used to power solid oxide fuel cell. The electricity of the fuel cell will power the residential place, and the thermal potential of the exhaust will be stored. In daylight, the solar thermal potential will be utilized for district heating. In the absence of solar light, stored thermal energy will be used for district heating and hot water supply. Additionally, the CO2 emitted from the system will not be released into the environment but stored for industrial purposes. The best area of application of the proposed system is cold areas such as Switzerland.\",\"PeriodicalId\":14195,\"journal\":{\"name\":\"International Journal of Photoenergy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Photoenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8790631\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/8790631","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Modeling and Simulation of Solid Oxide Fuel Cell Integrated with Anaerobic Digester, Thermal Storage Unit and Solar Collector: A Net Zero Emission System
Energy production from clean and green sources is one of the eminent challenges to mankind. Overall, all industrial sectors contribute to CO2 emission, but the energy production sector is a major contributor. In recent years, CO2 emissions from the energy sector have increased by 1.7%. Therefore, the development of alternative energy production sources is a pivot for researchers. In this regard, the fuel cell has been a promising technology but still accompanied by the release of greenhouse gasses but relatively lower than that of fossil fuels. The integration of the fuel cell to the biogas has been a promising factor to reduce emissions. This study contributes to the same by producing a self-sustaining biogas-fuel cell multigeneration system for cold areas. Mathematical modeling of all complements of the system, i.e., anaerobic digester, solid oxide fuel cell, solar collector, and thermal storage system, is provided. MATLAB/Simulink environment is used for simulation of the system. The proposed system will use an anaerobic digester for methane production. Hence, produced methane will be used to power solid oxide fuel cell. The electricity of the fuel cell will power the residential place, and the thermal potential of the exhaust will be stored. In daylight, the solar thermal potential will be utilized for district heating. In the absence of solar light, stored thermal energy will be used for district heating and hot water supply. Additionally, the CO2 emitted from the system will not be released into the environment but stored for industrial purposes. The best area of application of the proposed system is cold areas such as Switzerland.
期刊介绍:
International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge.
The journal covers the following topics and applications:
- Photocatalysis
- Photostability and Toxicity of Drugs and UV-Photoprotection
- Solar Energy
- Artificial Light Harvesting Systems
- Photomedicine
- Photo Nanosystems
- Nano Tools for Solar Energy and Photochemistry
- Solar Chemistry
- Photochromism
- Organic Light-Emitting Diodes
- PV Systems
- Nano Structured Solar Cells