{"title":"Cohen-Macaulay同调维数","authors":"P. Sahandi, Tirdad Sharif, S. Yassemi","doi":"10.7146/math.scand.a-119382","DOIUrl":null,"url":null,"abstract":"We introduce new homological dimensions, namely the Cohen-Macaulay projective, injective and flat dimensions for homologically bounded complexes. Among other things we show that (a) these invariants characterize the Cohen-Macaulay property for local rings, (b) Cohen-Macaulay flat dimension fits between the Gorenstein flat dimension and the large restricted flat dimension, and (c) Cohen-Macaulay injective dimension fits between the Gorenstein injective dimension and the Chouinard invariant.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cohen-Macaulay homological dimensions\",\"authors\":\"P. Sahandi, Tirdad Sharif, S. Yassemi\",\"doi\":\"10.7146/math.scand.a-119382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce new homological dimensions, namely the Cohen-Macaulay projective, injective and flat dimensions for homologically bounded complexes. Among other things we show that (a) these invariants characterize the Cohen-Macaulay property for local rings, (b) Cohen-Macaulay flat dimension fits between the Gorenstein flat dimension and the large restricted flat dimension, and (c) Cohen-Macaulay injective dimension fits between the Gorenstein injective dimension and the Chouinard invariant.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-119382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-119382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce new homological dimensions, namely the Cohen-Macaulay projective, injective and flat dimensions for homologically bounded complexes. Among other things we show that (a) these invariants characterize the Cohen-Macaulay property for local rings, (b) Cohen-Macaulay flat dimension fits between the Gorenstein flat dimension and the large restricted flat dimension, and (c) Cohen-Macaulay injective dimension fits between the Gorenstein injective dimension and the Chouinard invariant.