具有Robin边界条件的三维反德西特时空的真空极化

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Sivakumar Namasivayam, Elizabeth Winstanley
{"title":"具有Robin边界条件的三维反德西特时空的真空极化","authors":"Sivakumar Namasivayam,&nbsp;Elizabeth Winstanley","doi":"10.1007/s10714-022-03056-6","DOIUrl":null,"url":null,"abstract":"<div><p>We study a quantum scalar field, with general mass and coupling to the scalar curvature, propagating on three-dimensional global anti-de Sitter space-time. We determine the vacuum and thermal expectation values of the square of the field, also known as the vacuum polarisation (VP). We consider values of the scalar field mass and coupling for which there is a choice of boundary conditions giving well-posed classical dynamics. We apply Dirichlet, Neumann and Robin (mixed) boundary conditions to the field at the space-time boundary. We find finite values of the VP when the parameter governing the Robin boundary conditions is below a certain critical value. For all couplings, the vacuum expectation values of the VP with either Neumann or Dirichlet boundary conditions are constant and respect the maximal symmetry of the background space-time. However, this is not the case for Robin boundary conditions, when both the vacuum and thermal expectation values depend on the space-time location. At the space-time boundary, we find that both the vacuum and thermal expectation values of the VP with Robin boundary conditions converge to the result when Neumann boundary conditions are applied, except in the case of Dirichlet boundary conditions.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"55 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-022-03056-6.pdf","citationCount":"2","resultStr":"{\"title\":\"Vacuum polarization on three-dimensional anti-de Sitter space-time with Robin boundary conditions\",\"authors\":\"Sivakumar Namasivayam,&nbsp;Elizabeth Winstanley\",\"doi\":\"10.1007/s10714-022-03056-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a quantum scalar field, with general mass and coupling to the scalar curvature, propagating on three-dimensional global anti-de Sitter space-time. We determine the vacuum and thermal expectation values of the square of the field, also known as the vacuum polarisation (VP). We consider values of the scalar field mass and coupling for which there is a choice of boundary conditions giving well-posed classical dynamics. We apply Dirichlet, Neumann and Robin (mixed) boundary conditions to the field at the space-time boundary. We find finite values of the VP when the parameter governing the Robin boundary conditions is below a certain critical value. For all couplings, the vacuum expectation values of the VP with either Neumann or Dirichlet boundary conditions are constant and respect the maximal symmetry of the background space-time. However, this is not the case for Robin boundary conditions, when both the vacuum and thermal expectation values depend on the space-time location. At the space-time boundary, we find that both the vacuum and thermal expectation values of the VP with Robin boundary conditions converge to the result when Neumann boundary conditions are applied, except in the case of Dirichlet boundary conditions.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10714-022-03056-6.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-022-03056-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-022-03056-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

研究了在三维全局反德西特时空中传播的具有一般质量并与标量曲率耦合的量子标量场。我们确定了真空和热期望值的平方场,也称为真空极化(VP)。我们考虑标量场质量和耦合的值,其中有一个边界条件的选择给出了良好的经典动力学。我们将Dirichlet、Neumann和Robin(混合)边界条件应用于时空边界处的场。当控制Robin边界条件的参数低于某一临界值时,得到了VP的有限值。对于所有的耦合,无论在诺伊曼边界条件下还是在狄利克雷边界条件下,VP的真空期望值都是恒定的,并且尊重背景时空的最大对称性。然而,当真空期望值和热期望值都依赖于时空位置时,罗宾边界条件就不是这样了。在时空边界处,我们发现除了Dirichlet边界条件外,具有Robin边界条件的真空期望值和热期望值都收敛于采用Neumann边界条件时的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vacuum polarization on three-dimensional anti-de Sitter space-time with Robin boundary conditions

We study a quantum scalar field, with general mass and coupling to the scalar curvature, propagating on three-dimensional global anti-de Sitter space-time. We determine the vacuum and thermal expectation values of the square of the field, also known as the vacuum polarisation (VP). We consider values of the scalar field mass and coupling for which there is a choice of boundary conditions giving well-posed classical dynamics. We apply Dirichlet, Neumann and Robin (mixed) boundary conditions to the field at the space-time boundary. We find finite values of the VP when the parameter governing the Robin boundary conditions is below a certain critical value. For all couplings, the vacuum expectation values of the VP with either Neumann or Dirichlet boundary conditions are constant and respect the maximal symmetry of the background space-time. However, this is not the case for Robin boundary conditions, when both the vacuum and thermal expectation values depend on the space-time location. At the space-time boundary, we find that both the vacuum and thermal expectation values of the VP with Robin boundary conditions converge to the result when Neumann boundary conditions are applied, except in the case of Dirichlet boundary conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信