$\mathscr{T}$-理想和半素理想II上的交换广义导子

Q3 Mathematics
N. Rehman, Hafedh M. Alnoghashi
{"title":"$\\mathscr{T}$-理想和半素理想II上的交换广义导子","authors":"N. Rehman, Hafedh M. Alnoghashi","doi":"10.30970/ms.57.1.98-110","DOIUrl":null,"url":null,"abstract":"The study's primary purpose is to investigate the $\\mathscr{A}/\\mathscr{T}$ structure of a quotient ring, where $\\mathscr{A}$ is an arbitrary ring and $\\mathscr{T}$ is a semi-prime ideal of $\\mathscr{A}$. In more details, we look at the differential identities in a semi-prime ideal of an arbitrary ring using $\\mathscr{T}$-commuting generalized derivation. The article proves a number of statements. A characteristic representative of these assertions is, for example, the following Theorem 3: Let $\\mathscr{A}$ be a ring with $\\mathscr{T}$ a semi-prime ideal and $\\mathscr{I}$ an ideal of $\\mathscr{A}.$ If $(\\lambda, \\psi)$ is a non-zero generalized derivation of $\\mathscr{A}$ and the derivation satisfies any one of the conditions:\\1)\\ $\\lambda([a, b])\\pm[a, \\psi(b)]\\in \\mathscr{T}$,\\ 2) $\\lambda(a\\circ b)\\pm a\\circ \\psi(b)\\in \\mathscr{T}$,$\\forall$ $a, b\\in \\mathscr{I},$ then $\\psi$ is $\\mathscr{T}$-commuting on $\\mathscr{I}.$ \nFurthermore, examples are provided to demonstrate that the constraints placed on the hypothesis of the various theorems were not unnecessary.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"$\\\\mathscr{T}$-Commuting Generalized Derivations on Ideals and Semi-Prime Ideal-II\",\"authors\":\"N. Rehman, Hafedh M. Alnoghashi\",\"doi\":\"10.30970/ms.57.1.98-110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study's primary purpose is to investigate the $\\\\mathscr{A}/\\\\mathscr{T}$ structure of a quotient ring, where $\\\\mathscr{A}$ is an arbitrary ring and $\\\\mathscr{T}$ is a semi-prime ideal of $\\\\mathscr{A}$. In more details, we look at the differential identities in a semi-prime ideal of an arbitrary ring using $\\\\mathscr{T}$-commuting generalized derivation. The article proves a number of statements. A characteristic representative of these assertions is, for example, the following Theorem 3: Let $\\\\mathscr{A}$ be a ring with $\\\\mathscr{T}$ a semi-prime ideal and $\\\\mathscr{I}$ an ideal of $\\\\mathscr{A}.$ If $(\\\\lambda, \\\\psi)$ is a non-zero generalized derivation of $\\\\mathscr{A}$ and the derivation satisfies any one of the conditions:\\\\1)\\\\ $\\\\lambda([a, b])\\\\pm[a, \\\\psi(b)]\\\\in \\\\mathscr{T}$,\\\\ 2) $\\\\lambda(a\\\\circ b)\\\\pm a\\\\circ \\\\psi(b)\\\\in \\\\mathscr{T}$,$\\\\forall$ $a, b\\\\in \\\\mathscr{I},$ then $\\\\psi$ is $\\\\mathscr{T}$-commuting on $\\\\mathscr{I}.$ \\nFurthermore, examples are provided to demonstrate that the constraints placed on the hypothesis of the various theorems were not unnecessary.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.57.1.98-110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.57.1.98-110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本研究的主要目的是研究商环的$\mathscr{A}/\mathscr{T}$结构,其中$\mathscr{A}$是任意环,$\mathscr{T}$为$\mathscr{A}$的半素数理想。更详细地,我们使用$\mathscr{T}$-交换广义导数来研究任意环的半素理想中的微分恒等式。这篇文章证明了一些说法。例如,这些断言的一个特征代表是以下定理3:设$\mathscr{A}$是一个环,其中$\mathscr{T}$为半素数理想,$\mathscr{I}$则为$\mathscr{A}的理想。$如果$(\lambda,\psi)$是$\mathscr{a}$的非零广义导数,并且该导数满足以下条件之一:\1)\$\lambda([a,b]此外,还提供了一些例子来证明对各种定理的假设施加的约束并不是没有必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\mathscr{T}$-Commuting Generalized Derivations on Ideals and Semi-Prime Ideal-II
The study's primary purpose is to investigate the $\mathscr{A}/\mathscr{T}$ structure of a quotient ring, where $\mathscr{A}$ is an arbitrary ring and $\mathscr{T}$ is a semi-prime ideal of $\mathscr{A}$. In more details, we look at the differential identities in a semi-prime ideal of an arbitrary ring using $\mathscr{T}$-commuting generalized derivation. The article proves a number of statements. A characteristic representative of these assertions is, for example, the following Theorem 3: Let $\mathscr{A}$ be a ring with $\mathscr{T}$ a semi-prime ideal and $\mathscr{I}$ an ideal of $\mathscr{A}.$ If $(\lambda, \psi)$ is a non-zero generalized derivation of $\mathscr{A}$ and the derivation satisfies any one of the conditions:\1)\ $\lambda([a, b])\pm[a, \psi(b)]\in \mathscr{T}$,\ 2) $\lambda(a\circ b)\pm a\circ \psi(b)\in \mathscr{T}$,$\forall$ $a, b\in \mathscr{I},$ then $\psi$ is $\mathscr{T}$-commuting on $\mathscr{I}.$ Furthermore, examples are provided to demonstrate that the constraints placed on the hypothesis of the various theorems were not unnecessary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信