So Ye Jang, J. Joo, E. Kang, Hyeon Woo Go, Jeong-Min Park, Moo Il Jeong, Dong Ho Lee
{"title":"抑制铜绿微囊藻生长的超声照射条件的推导","authors":"So Ye Jang, J. Joo, E. Kang, Hyeon Woo Go, Jeong-Min Park, Moo Il Jeong, Dong Ho Lee","doi":"10.4491/ksee.2022.44.4.101","DOIUrl":null,"url":null,"abstract":"Objectives : The optimal ultrasonic irradiation conditions were derived through laboratory-scale experiments to evaluate growth inhibition effect of Microcystis aeruginosa (M. aeruginosa), which is the main specie of Cyanobacterial Harmful Algal Blooms (CyanoHABs) in Republic of Korea.Methods : The experiment was conducted by changing ultrasonic frequency, intensity, and initial cell concentration to observe the growth inhibition effect of M. aerginosa. The experiment was performed using shielded acrylic reactor [20 cm (W) × 20 cm (L) × 30 cm (H)]. Experiments were conducted using large volume (7.2 L) of water samples with high concentrations of M. aeruginosa, and the ultrasonic irradiation time was fixed at 3 hours.Results and Discussion : In all experiments, pictorial view of M. aeruginosa samples, chlorophyll-a (Chl-a) and cell number of M. aerginosa were observed. As a result of ultrasonic irradiation on M. aeruginosa, the decrease in both Chl-a concentration and cell number of M. aeruginosa was monitored after sonication compared to the decrease during sonication. In addition, the rebound growth was confirmed after certain period of growth inhibition of M. aeruginosa. The optimal ultrasonic irradiation conditions for the growth inhibition of M. aeruginosa were obtained at the lower frequency and the higher intensity. Whereas algal growth inhibition was observed with high concentration (4.5 × 106 cells mL-1) of M. aeruginosa, algal growth inhibition was not monitored with low concentration (1.1 × 106 cells mL-1) of M. aeruginosa.Conclusion : Through this study, the algal growth inhibition by ultrasonic was effective. Although the growth inhibition effect persisted for a certain period of time, subsequent regrowth was observed. Therefore, periodic ultrasonic irradiation is necessary for long-term growth inhibition of algal in field applications.","PeriodicalId":52756,"journal":{"name":"daehanhwangyeonggonghaghoeji","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivation of Ultrasonic Irradiation Condition to Inhibit the Growth of Microcystis Aeruginosa\",\"authors\":\"So Ye Jang, J. Joo, E. Kang, Hyeon Woo Go, Jeong-Min Park, Moo Il Jeong, Dong Ho Lee\",\"doi\":\"10.4491/ksee.2022.44.4.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives : The optimal ultrasonic irradiation conditions were derived through laboratory-scale experiments to evaluate growth inhibition effect of Microcystis aeruginosa (M. aeruginosa), which is the main specie of Cyanobacterial Harmful Algal Blooms (CyanoHABs) in Republic of Korea.Methods : The experiment was conducted by changing ultrasonic frequency, intensity, and initial cell concentration to observe the growth inhibition effect of M. aerginosa. The experiment was performed using shielded acrylic reactor [20 cm (W) × 20 cm (L) × 30 cm (H)]. Experiments were conducted using large volume (7.2 L) of water samples with high concentrations of M. aeruginosa, and the ultrasonic irradiation time was fixed at 3 hours.Results and Discussion : In all experiments, pictorial view of M. aeruginosa samples, chlorophyll-a (Chl-a) and cell number of M. aerginosa were observed. As a result of ultrasonic irradiation on M. aeruginosa, the decrease in both Chl-a concentration and cell number of M. aeruginosa was monitored after sonication compared to the decrease during sonication. In addition, the rebound growth was confirmed after certain period of growth inhibition of M. aeruginosa. The optimal ultrasonic irradiation conditions for the growth inhibition of M. aeruginosa were obtained at the lower frequency and the higher intensity. Whereas algal growth inhibition was observed with high concentration (4.5 × 106 cells mL-1) of M. aeruginosa, algal growth inhibition was not monitored with low concentration (1.1 × 106 cells mL-1) of M. aeruginosa.Conclusion : Through this study, the algal growth inhibition by ultrasonic was effective. Although the growth inhibition effect persisted for a certain period of time, subsequent regrowth was observed. Therefore, periodic ultrasonic irradiation is necessary for long-term growth inhibition of algal in field applications.\",\"PeriodicalId\":52756,\"journal\":{\"name\":\"daehanhwangyeonggonghaghoeji\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"daehanhwangyeonggonghaghoeji\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4491/ksee.2022.44.4.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"daehanhwangyeonggonghaghoeji","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4491/ksee.2022.44.4.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Derivation of Ultrasonic Irradiation Condition to Inhibit the Growth of Microcystis Aeruginosa
Objectives : The optimal ultrasonic irradiation conditions were derived through laboratory-scale experiments to evaluate growth inhibition effect of Microcystis aeruginosa (M. aeruginosa), which is the main specie of Cyanobacterial Harmful Algal Blooms (CyanoHABs) in Republic of Korea.Methods : The experiment was conducted by changing ultrasonic frequency, intensity, and initial cell concentration to observe the growth inhibition effect of M. aerginosa. The experiment was performed using shielded acrylic reactor [20 cm (W) × 20 cm (L) × 30 cm (H)]. Experiments were conducted using large volume (7.2 L) of water samples with high concentrations of M. aeruginosa, and the ultrasonic irradiation time was fixed at 3 hours.Results and Discussion : In all experiments, pictorial view of M. aeruginosa samples, chlorophyll-a (Chl-a) and cell number of M. aerginosa were observed. As a result of ultrasonic irradiation on M. aeruginosa, the decrease in both Chl-a concentration and cell number of M. aeruginosa was monitored after sonication compared to the decrease during sonication. In addition, the rebound growth was confirmed after certain period of growth inhibition of M. aeruginosa. The optimal ultrasonic irradiation conditions for the growth inhibition of M. aeruginosa were obtained at the lower frequency and the higher intensity. Whereas algal growth inhibition was observed with high concentration (4.5 × 106 cells mL-1) of M. aeruginosa, algal growth inhibition was not monitored with low concentration (1.1 × 106 cells mL-1) of M. aeruginosa.Conclusion : Through this study, the algal growth inhibition by ultrasonic was effective. Although the growth inhibition effect persisted for a certain period of time, subsequent regrowth was observed. Therefore, periodic ultrasonic irradiation is necessary for long-term growth inhibition of algal in field applications.