铋氧化物的回收利用

IF 0.4 Q4 METALLURGY & METALLURGICAL ENGINEERING
A. Korolev, S. Sergeichenko, K. Timofeev, G. Maltsev, R. Voinkov
{"title":"铋氧化物的回收利用","authors":"A. Korolev, S. Sergeichenko, K. Timofeev, G. Maltsev, R. Voinkov","doi":"10.17212/1994-6309-2021-23.3-155-165","DOIUrl":null,"url":null,"abstract":"Introduction. The paper is devoted to the creation of an environmentally safe, technologically efficient and cost-effective high-performance integrated scheme for the recycling of lead-containing industrial products and waste, in particular, bismuth oxides and drosses formed during the melting of copper-electrolyte sludge, with the production of commodity monoelement products. To solve the problem, a combined technology is used, which is based on hydrometallurgical operations that allow separating chemical elements with similar properties with high extraction into finished products. The aim of the work is to study and develop fundamental approaches and rational integrated technologies for recycling bismuth drosses and oxides-industrial products of refining rough lead, using reducing melts of raw materials and bismuth-enriched sludge, electrolysis of bismuth lead to obtain rough bismuth containing ≥ 90 % Bi with its direct extraction of ≥ 70 %. Methods and approaches: melting at a temperature of 1,100…1,150 oC a charge of optimal composition containing bismuth oxides, sodium carbonate, silicon dioxide and carbon. Novelty: a decrease in the content of noble metals and accompanying chalcogenes in secondary copper-containing raw materials with an increase in the amount of impurity elements. Results and discussion: joint melting (1,100…1,150 °C) of bismuth oxides, sodium carbonate, silicon dioxide and carbon, taken in the mass ratio 100 : (15‒66) : (11‒25) : (5‒7), allows to transfer 89.0 – 93.6 % of bismuth and 99.5 ‒ 99.7 % of lead from the initial oxides to bismuth lead containing ~7 % Bi and ~80 % Pb. The main phase of the Pb-Bi alloy is elemental lead. The increased flux consumption leads to an increase in the amount of recycled silicate slags that are poor in target metals, into which it passes,%: 1.4 Bi; 2 Pb; 47 Zn; 23 Sb; 33 Sn. Main slag phases are following: Na2CaSiO4, Na4Mg2Si3O10, MgO, Pb, ZnS, PbS. The practical relevance is determined by the optimal mode of reducing melting of bismuth oxides (100 %) to obtain lead bismuth, %: 66 Na2CO3, 25 SiO2, 5 C; the process temperature is 1,150 ° C. The presence of impurities makes it necessary to introduce reagent treatment of lead bismuth into the technological scheme for recycling bismuth oxides. Decontamination and alkaline softening will make it possible to obtain a Pb-Bi alloy suitable for pyroelectrometallurgical recycling.","PeriodicalId":42889,"journal":{"name":"Obrabotka Metallov-Metal Working and Material Science","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recycling of bismuth oxides\",\"authors\":\"A. Korolev, S. Sergeichenko, K. Timofeev, G. Maltsev, R. Voinkov\",\"doi\":\"10.17212/1994-6309-2021-23.3-155-165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. The paper is devoted to the creation of an environmentally safe, technologically efficient and cost-effective high-performance integrated scheme for the recycling of lead-containing industrial products and waste, in particular, bismuth oxides and drosses formed during the melting of copper-electrolyte sludge, with the production of commodity monoelement products. To solve the problem, a combined technology is used, which is based on hydrometallurgical operations that allow separating chemical elements with similar properties with high extraction into finished products. The aim of the work is to study and develop fundamental approaches and rational integrated technologies for recycling bismuth drosses and oxides-industrial products of refining rough lead, using reducing melts of raw materials and bismuth-enriched sludge, electrolysis of bismuth lead to obtain rough bismuth containing ≥ 90 % Bi with its direct extraction of ≥ 70 %. Methods and approaches: melting at a temperature of 1,100…1,150 oC a charge of optimal composition containing bismuth oxides, sodium carbonate, silicon dioxide and carbon. Novelty: a decrease in the content of noble metals and accompanying chalcogenes in secondary copper-containing raw materials with an increase in the amount of impurity elements. Results and discussion: joint melting (1,100…1,150 °C) of bismuth oxides, sodium carbonate, silicon dioxide and carbon, taken in the mass ratio 100 : (15‒66) : (11‒25) : (5‒7), allows to transfer 89.0 – 93.6 % of bismuth and 99.5 ‒ 99.7 % of lead from the initial oxides to bismuth lead containing ~7 % Bi and ~80 % Pb. The main phase of the Pb-Bi alloy is elemental lead. The increased flux consumption leads to an increase in the amount of recycled silicate slags that are poor in target metals, into which it passes,%: 1.4 Bi; 2 Pb; 47 Zn; 23 Sb; 33 Sn. Main slag phases are following: Na2CaSiO4, Na4Mg2Si3O10, MgO, Pb, ZnS, PbS. The practical relevance is determined by the optimal mode of reducing melting of bismuth oxides (100 %) to obtain lead bismuth, %: 66 Na2CO3, 25 SiO2, 5 C; the process temperature is 1,150 ° C. The presence of impurities makes it necessary to introduce reagent treatment of lead bismuth into the technological scheme for recycling bismuth oxides. Decontamination and alkaline softening will make it possible to obtain a Pb-Bi alloy suitable for pyroelectrometallurgical recycling.\",\"PeriodicalId\":42889,\"journal\":{\"name\":\"Obrabotka Metallov-Metal Working and Material Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Obrabotka Metallov-Metal Working and Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17212/1994-6309-2021-23.3-155-165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Obrabotka Metallov-Metal Working and Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/1994-6309-2021-23.3-155-165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

介绍该论文致力于创建一个环境安全、技术高效、成本效益高的高性能综合方案,用于回收含铅工业产品和废物,特别是铜电解质污泥熔化过程中形成的氧化铋和残渣,生产商品单元素产品。为了解决这个问题,使用了一种基于湿法冶金操作的组合技术,该技术可以将具有类似性质的化学元素以高提取率分离成成品。本工作的目的是研究和开发利用原料还原液和富铋污泥,电解铋铅,直接提取铋含量≥70%,回收粗铅工业品中铋渣和氧化物的基本途径和合理的集成技术。方法和方法:在1100…1150℃的温度下熔化含有氧化铋、碳酸钠、二氧化硅和碳的最佳成分的炉料。新颖性:随着杂质元素含量的增加,含仲铜原料中贵金属和伴生硫族元素的含量降低。结果和讨论:氧化铋、碳酸钠、二氧化硅和碳的联合熔融(1100…1150°C),质量比为100:(15-66):(11-25):(5-7),可以将89.0-93.6%的铋和99.5-99.7%的铅从初始氧化物转移到含有~7%铋和~80%铅的铋-铅。Pb-Bi合金的主要相是元素铅。熔剂消耗的增加导致其通过的目标金属含量低的回收硅酸盐渣的量增加,%:1.4Bi;2 Pb;47Zn;23Sb;33锡。主要渣相如下:Na2CaSiO4、Na4Mg2Si3O10、MgO、Pb、ZnS、PbS。实际相关性是通过还原熔融铋氧化物(100%)以获得铅铋的最佳模式来确定的,%:66Na2CO3,25SiO2,5C;工艺温度为1150°C。杂质的存在使得有必要将铅铋的试剂处理引入铋氧化物的回收技术方案中。去污和碱性软化将使获得适合于热电冶金回收的Pb-Bi合金成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recycling of bismuth oxides
Introduction. The paper is devoted to the creation of an environmentally safe, technologically efficient and cost-effective high-performance integrated scheme for the recycling of lead-containing industrial products and waste, in particular, bismuth oxides and drosses formed during the melting of copper-electrolyte sludge, with the production of commodity monoelement products. To solve the problem, a combined technology is used, which is based on hydrometallurgical operations that allow separating chemical elements with similar properties with high extraction into finished products. The aim of the work is to study and develop fundamental approaches and rational integrated technologies for recycling bismuth drosses and oxides-industrial products of refining rough lead, using reducing melts of raw materials and bismuth-enriched sludge, electrolysis of bismuth lead to obtain rough bismuth containing ≥ 90 % Bi with its direct extraction of ≥ 70 %. Methods and approaches: melting at a temperature of 1,100…1,150 oC a charge of optimal composition containing bismuth oxides, sodium carbonate, silicon dioxide and carbon. Novelty: a decrease in the content of noble metals and accompanying chalcogenes in secondary copper-containing raw materials with an increase in the amount of impurity elements. Results and discussion: joint melting (1,100…1,150 °C) of bismuth oxides, sodium carbonate, silicon dioxide and carbon, taken in the mass ratio 100 : (15‒66) : (11‒25) : (5‒7), allows to transfer 89.0 – 93.6 % of bismuth and 99.5 ‒ 99.7 % of lead from the initial oxides to bismuth lead containing ~7 % Bi and ~80 % Pb. The main phase of the Pb-Bi alloy is elemental lead. The increased flux consumption leads to an increase in the amount of recycled silicate slags that are poor in target metals, into which it passes,%: 1.4 Bi; 2 Pb; 47 Zn; 23 Sb; 33 Sn. Main slag phases are following: Na2CaSiO4, Na4Mg2Si3O10, MgO, Pb, ZnS, PbS. The practical relevance is determined by the optimal mode of reducing melting of bismuth oxides (100 %) to obtain lead bismuth, %: 66 Na2CO3, 25 SiO2, 5 C; the process temperature is 1,150 ° C. The presence of impurities makes it necessary to introduce reagent treatment of lead bismuth into the technological scheme for recycling bismuth oxides. Decontamination and alkaline softening will make it possible to obtain a Pb-Bi alloy suitable for pyroelectrometallurgical recycling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Obrabotka Metallov-Metal Working and Material Science
Obrabotka Metallov-Metal Working and Material Science METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.10
自引率
50.00%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信