Heisenberg群上的多边际最优输运

IF 0.6 Q4 MATHEMATICS, APPLIED
Brendan Pass, A. Pinamonti, Mattia Vedovato
{"title":"Heisenberg群上的多边际最优输运","authors":"Brendan Pass, A. Pinamonti, Mattia Vedovato","doi":"10.4310/maa.2021.v28.n1.a5","DOIUrl":null,"url":null,"abstract":"We consider the multi-marginal optimal transport of aligning several compactly supported marginals on the Heisenberg group to minimize the total cost, which we take to be the sum of the squared Carnot-Caratheodory distances from the marginal points to their barycenter. Under certain technical hypotheses, we prove existence and uniqueness of optimal maps. We also point out several related open questions.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-marginal optimal transport on the Heisenberg group\",\"authors\":\"Brendan Pass, A. Pinamonti, Mattia Vedovato\",\"doi\":\"10.4310/maa.2021.v28.n1.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the multi-marginal optimal transport of aligning several compactly supported marginals on the Heisenberg group to minimize the total cost, which we take to be the sum of the squared Carnot-Caratheodory distances from the marginal points to their barycenter. Under certain technical hypotheses, we prove existence and uniqueness of optimal maps. We also point out several related open questions.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/maa.2021.v28.n1.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2021.v28.n1.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑在Heisenberg群上对齐几个紧支撑的边缘以最小化总成本的多边缘最优传输,我们将总成本取为从边缘点到其质心的carnot - cartheodory距离的平方之和。在一定的技术假设下,证明了最优映射的存在唯一性。我们还指出了几个相关的悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-marginal optimal transport on the Heisenberg group
We consider the multi-marginal optimal transport of aligning several compactly supported marginals on the Heisenberg group to minimize the total cost, which we take to be the sum of the squared Carnot-Caratheodory distances from the marginal points to their barycenter. Under certain technical hypotheses, we prove existence and uniqueness of optimal maps. We also point out several related open questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信