{"title":"超极化与刘维尔空间的物理边界","authors":"Malcolm H Levitt, Christian Bengs","doi":"10.5194/mr-2-395-2021","DOIUrl":null,"url":null,"abstract":"<p><p>The quantum state of a spin ensemble is described by a density operator, which corresponds to a point in the Liouville space of orthogonal spin operators. Valid density operators are confined to a particular region of Liouville space, which we call the physical region and which is bounded by multidimensional figures called simplexes. Each vertex of a simplex corresponds to a pure-state density operator. We provide examples for spins <math><mrow><mi>I</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>, <math><mrow><mi>I</mi><mo>=</mo><mn>1</mn></mrow></math>, <math><mrow><mi>I</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math> and for coupled pairs of spins-1/2. We use the von Neumann entropy as a criterion for hyperpolarization. It is shown that the inhomogeneous master equation for spin dynamics leads to non-physical results in some cases, a problem that may be avoided by using the Lindbladian master equation.</p>","PeriodicalId":93333,"journal":{"name":"Magnetic resonance (Gottingen, Germany)","volume":" ","pages":"395-407"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539761/pdf/","citationCount":"3","resultStr":"{\"title\":\"Hyperpolarization and the physical boundary of Liouville space.\",\"authors\":\"Malcolm H Levitt, Christian Bengs\",\"doi\":\"10.5194/mr-2-395-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The quantum state of a spin ensemble is described by a density operator, which corresponds to a point in the Liouville space of orthogonal spin operators. Valid density operators are confined to a particular region of Liouville space, which we call the physical region and which is bounded by multidimensional figures called simplexes. Each vertex of a simplex corresponds to a pure-state density operator. We provide examples for spins <math><mrow><mi>I</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>, <math><mrow><mi>I</mi><mo>=</mo><mn>1</mn></mrow></math>, <math><mrow><mi>I</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math> and for coupled pairs of spins-1/2. We use the von Neumann entropy as a criterion for hyperpolarization. It is shown that the inhomogeneous master equation for spin dynamics leads to non-physical results in some cases, a problem that may be avoided by using the Lindbladian master equation.</p>\",\"PeriodicalId\":93333,\"journal\":{\"name\":\"Magnetic resonance (Gottingen, Germany)\",\"volume\":\" \",\"pages\":\"395-407\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539761/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance (Gottingen, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/mr-2-395-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance (Gottingen, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/mr-2-395-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 3
摘要
摘要自旋系综的量子态由密度算子描述,密度算子对应于正交自旋算子的Liouville空间中的一个点。有效的密度算符被限制在Liouville空间的一个特定区域,我们称之为物理区域,它被称为简单体的多维图形所包围。单纯形的每个顶点对应于一个纯态密度算子。我们给出了自旋I = 1/2, I = 1, I = 3 /2和自旋-1/2耦合对的例子。我们使用冯·诺伊曼熵作为超极化的标准。结果表明,自旋动力学的非齐次主方程在某些情况下会导致非物理结果,而使用Lindbladian主方程可以避免这个问题。
Hyperpolarization and the physical boundary of Liouville space.
The quantum state of a spin ensemble is described by a density operator, which corresponds to a point in the Liouville space of orthogonal spin operators. Valid density operators are confined to a particular region of Liouville space, which we call the physical region and which is bounded by multidimensional figures called simplexes. Each vertex of a simplex corresponds to a pure-state density operator. We provide examples for spins , , and for coupled pairs of spins-1/2. We use the von Neumann entropy as a criterion for hyperpolarization. It is shown that the inhomogeneous master equation for spin dynamics leads to non-physical results in some cases, a problem that may be avoided by using the Lindbladian master equation.