超极化与刘维尔空间的物理边界

Q3 Physics and Astronomy
Magnetic resonance (Gottingen, Germany) Pub Date : 2021-06-08 eCollection Date: 2021-01-01 DOI:10.5194/mr-2-395-2021
Malcolm H Levitt, Christian Bengs
{"title":"超极化与刘维尔空间的物理边界","authors":"Malcolm H Levitt,&nbsp;Christian Bengs","doi":"10.5194/mr-2-395-2021","DOIUrl":null,"url":null,"abstract":"<p><p>The quantum state of a spin ensemble is described by a density operator, which corresponds to a point in the Liouville space of orthogonal spin operators. Valid density operators are confined to a particular region of Liouville space, which we call the physical region and which is bounded by multidimensional figures called simplexes. Each vertex of a simplex corresponds to a pure-state density operator. We provide examples for spins <math><mrow><mi>I</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>, <math><mrow><mi>I</mi><mo>=</mo><mn>1</mn></mrow></math>, <math><mrow><mi>I</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math> and for coupled pairs of spins-1/2. We use the von Neumann entropy as a criterion for hyperpolarization. It is shown that the inhomogeneous master equation for spin dynamics leads to non-physical results in some cases, a problem that may be avoided by using the Lindbladian master equation.</p>","PeriodicalId":93333,"journal":{"name":"Magnetic resonance (Gottingen, Germany)","volume":" ","pages":"395-407"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539761/pdf/","citationCount":"3","resultStr":"{\"title\":\"Hyperpolarization and the physical boundary of Liouville space.\",\"authors\":\"Malcolm H Levitt,&nbsp;Christian Bengs\",\"doi\":\"10.5194/mr-2-395-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The quantum state of a spin ensemble is described by a density operator, which corresponds to a point in the Liouville space of orthogonal spin operators. Valid density operators are confined to a particular region of Liouville space, which we call the physical region and which is bounded by multidimensional figures called simplexes. Each vertex of a simplex corresponds to a pure-state density operator. We provide examples for spins <math><mrow><mi>I</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>, <math><mrow><mi>I</mi><mo>=</mo><mn>1</mn></mrow></math>, <math><mrow><mi>I</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math> and for coupled pairs of spins-1/2. We use the von Neumann entropy as a criterion for hyperpolarization. It is shown that the inhomogeneous master equation for spin dynamics leads to non-physical results in some cases, a problem that may be avoided by using the Lindbladian master equation.</p>\",\"PeriodicalId\":93333,\"journal\":{\"name\":\"Magnetic resonance (Gottingen, Germany)\",\"volume\":\" \",\"pages\":\"395-407\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539761/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance (Gottingen, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/mr-2-395-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance (Gottingen, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/mr-2-395-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 3

摘要

摘要自旋系综的量子态由密度算子描述,密度算子对应于正交自旋算子的Liouville空间中的一个点。有效的密度算符被限制在Liouville空间的一个特定区域,我们称之为物理区域,它被称为简单体的多维图形所包围。单纯形的每个顶点对应于一个纯态密度算子。我们给出了自旋I = 1/2, I = 1, I = 3 /2和自旋-1/2耦合对的例子。我们使用冯·诺伊曼熵作为超极化的标准。结果表明,自旋动力学的非齐次主方程在某些情况下会导致非物理结果,而使用Lindbladian主方程可以避免这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hyperpolarization and the physical boundary of Liouville space.

Hyperpolarization and the physical boundary of Liouville space.

Hyperpolarization and the physical boundary of Liouville space.

Hyperpolarization and the physical boundary of Liouville space.

The quantum state of a spin ensemble is described by a density operator, which corresponds to a point in the Liouville space of orthogonal spin operators. Valid density operators are confined to a particular region of Liouville space, which we call the physical region and which is bounded by multidimensional figures called simplexes. Each vertex of a simplex corresponds to a pure-state density operator. We provide examples for spins I=1/2, I=1, I=3/2 and for coupled pairs of spins-1/2. We use the von Neumann entropy as a criterion for hyperpolarization. It is shown that the inhomogeneous master equation for spin dynamics leads to non-physical results in some cases, a problem that may be avoided by using the Lindbladian master equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信