相干直角Artin群上的极限群

Pub Date : 2020-09-03 DOI:10.5565/publmat6712305
M. Casals-Ruiz, A. Duncan, I. Kazachkov
{"title":"相干直角Artin群上的极限群","authors":"M. Casals-Ruiz, A. Duncan, I. Kazachkov","doi":"10.5565/publmat6712305","DOIUrl":null,"url":null,"abstract":"A new class of groups $\\mathcal{C}$, containing all coherent RAAGs and all toral relatively hyperbolic groups, is defined. It is shown that, for a group $G$ in the class $\\mathcal{C}$, the $\\mathbb{Z}[t]$-exponential group $G^{\\mathbb{Z}[t]}$ may be constructed as an iterated centraliser extension. Using this fact, it is proved that $G^{\\mathbb{Z}[t]}$ is fully residually $G$ (i.e. it has the same universal theory as $G$) and so its finitely generated subgroups are limit groups over $G$. If $\\mathbb{G}$ is a coherent RAAG, then the converse also holds - any limit group over $\\mathbb{G}$ embeds into $\\mathbb{G}^{\\mathbb{Z}[t]}$. Moreover, it is proved that limit groups over $\\mathbb{G}$ are finitely presented, coherent and CAT$(0)$, so in particular have solvable word and conjugacy problems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Limit groups over coherent right-angled Artin groups\",\"authors\":\"M. Casals-Ruiz, A. Duncan, I. Kazachkov\",\"doi\":\"10.5565/publmat6712305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new class of groups $\\\\mathcal{C}$, containing all coherent RAAGs and all toral relatively hyperbolic groups, is defined. It is shown that, for a group $G$ in the class $\\\\mathcal{C}$, the $\\\\mathbb{Z}[t]$-exponential group $G^{\\\\mathbb{Z}[t]}$ may be constructed as an iterated centraliser extension. Using this fact, it is proved that $G^{\\\\mathbb{Z}[t]}$ is fully residually $G$ (i.e. it has the same universal theory as $G$) and so its finitely generated subgroups are limit groups over $G$. If $\\\\mathbb{G}$ is a coherent RAAG, then the converse also holds - any limit group over $\\\\mathbb{G}$ embeds into $\\\\mathbb{G}^{\\\\mathbb{Z}[t]}$. Moreover, it is proved that limit groups over $\\\\mathbb{G}$ are finitely presented, coherent and CAT$(0)$, so in particular have solvable word and conjugacy problems.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6712305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6712305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

定义了一类新的群$\mathcal{C}$,它包含所有相干群和所有相对双曲群。证明了对于类$\mathcal{C}$中的群$G$, $\mathbb{Z}[t]$-指数群$G^{\mathbb{Z}[t]}$可以构造为迭代中心化扩展。利用这一事实证明了$G^{\mathbb{Z}[t]}$是完全残差$G$(即它与$G$具有相同的全称理论),因此它的有限生成子群是$G$上的极限群。如果$\mathbb{G}$是一个相干RAAG,那么反过来也成立——$\mathbb{G}$上的任何极限群都嵌入到$\mathbb{G}^{\mathbb{Z}[t]}$中。此外,还证明了$\mathbb{G}$上的极限群是有限呈现的、相干的和CAT$(0)$的,因此特别地具有可解的词和共轭问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Limit groups over coherent right-angled Artin groups
A new class of groups $\mathcal{C}$, containing all coherent RAAGs and all toral relatively hyperbolic groups, is defined. It is shown that, for a group $G$ in the class $\mathcal{C}$, the $\mathbb{Z}[t]$-exponential group $G^{\mathbb{Z}[t]}$ may be constructed as an iterated centraliser extension. Using this fact, it is proved that $G^{\mathbb{Z}[t]}$ is fully residually $G$ (i.e. it has the same universal theory as $G$) and so its finitely generated subgroups are limit groups over $G$. If $\mathbb{G}$ is a coherent RAAG, then the converse also holds - any limit group over $\mathbb{G}$ embeds into $\mathbb{G}^{\mathbb{Z}[t]}$. Moreover, it is proved that limit groups over $\mathbb{G}$ are finitely presented, coherent and CAT$(0)$, so in particular have solvable word and conjugacy problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信