{"title":"适应冲孔和双缺口剪切试验的分离式霍普金森压杆试样夹具的设计","authors":"Arya Dipajaya, Kemal I. Ahmad, M. A. Kariem","doi":"10.5614/j.eng.technol.sci.2022.54.4.8","DOIUrl":null,"url":null,"abstract":"This study focused on the design of a specimen fixture which can be installed on the end of a conventional transmission bar so that shear testing (punch and double-notch) can be conducted with any conventional split-Hopkinson apparatus. The research was conducted by using the finite element method in Abaqus/CAE with 6061-T651 Aluminum as the specimen material. The research successfully determined the effect of the fixture’s geometry and dimensions on the split-Hopkinson shear bar testing results. The optimum double-notch fixture provides great accuracy, having only a shear stress value difference of 1.49% with the original setup, while attaining force equilibrium after only 70 μs. The punch fixture, however, could only reach force equilibrium after 100 μs, thus providing too few observable data. Future work on the punch fixture is needed.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design of Split-Hopkinson Pressure Bar Specimen Fixture to Accommodate Punch and Double-Notch Shear Testing\",\"authors\":\"Arya Dipajaya, Kemal I. Ahmad, M. A. Kariem\",\"doi\":\"10.5614/j.eng.technol.sci.2022.54.4.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focused on the design of a specimen fixture which can be installed on the end of a conventional transmission bar so that shear testing (punch and double-notch) can be conducted with any conventional split-Hopkinson apparatus. The research was conducted by using the finite element method in Abaqus/CAE with 6061-T651 Aluminum as the specimen material. The research successfully determined the effect of the fixture’s geometry and dimensions on the split-Hopkinson shear bar testing results. The optimum double-notch fixture provides great accuracy, having only a shear stress value difference of 1.49% with the original setup, while attaining force equilibrium after only 70 μs. The punch fixture, however, could only reach force equilibrium after 100 μs, thus providing too few observable data. Future work on the punch fixture is needed.\",\"PeriodicalId\":15689,\"journal\":{\"name\":\"Journal of Engineering and Technological Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering and Technological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.eng.technol.sci.2022.54.4.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2022.54.4.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Design of Split-Hopkinson Pressure Bar Specimen Fixture to Accommodate Punch and Double-Notch Shear Testing
This study focused on the design of a specimen fixture which can be installed on the end of a conventional transmission bar so that shear testing (punch and double-notch) can be conducted with any conventional split-Hopkinson apparatus. The research was conducted by using the finite element method in Abaqus/CAE with 6061-T651 Aluminum as the specimen material. The research successfully determined the effect of the fixture’s geometry and dimensions on the split-Hopkinson shear bar testing results. The optimum double-notch fixture provides great accuracy, having only a shear stress value difference of 1.49% with the original setup, while attaining force equilibrium after only 70 μs. The punch fixture, however, could only reach force equilibrium after 100 μs, thus providing too few observable data. Future work on the punch fixture is needed.
期刊介绍:
Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.