从具有扭转法向束的曲线构造稳定向量束

IF 0.3 4区 数学 Q4 MATHEMATICS
Sergio Licanic
{"title":"从具有扭转法向束的曲线构造稳定向量束","authors":"Sergio Licanic","doi":"10.7146/math.scand.a-136533","DOIUrl":null,"url":null,"abstract":"Given a smooth irreducible curve $S$ with torsion normal bundle on a projective surface $X$, we provide a criterion for the non-emptiness of the moduli of slope stable vector bundles with prescribed Chern classes. The criterion is given in terms of the topology of the pair $(X,S)$.","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing stable vector bundles from curves with torsion normal bundle\",\"authors\":\"Sergio Licanic\",\"doi\":\"10.7146/math.scand.a-136533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a smooth irreducible curve $S$ with torsion normal bundle on a projective surface $X$, we provide a criterion for the non-emptiness of the moduli of slope stable vector bundles with prescribed Chern classes. The criterion is given in terms of the topology of the pair $(X,S)$.\",\"PeriodicalId\":49873,\"journal\":{\"name\":\"Mathematica Scandinavica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Scandinavica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-136533\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-136533","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了射影表面X上具有扭转法向束的光滑不可约曲线S$,给出了具有规定Chern类的斜率稳定向量束模不空的判据。该判据是根据对$(X,S)$的拓扑给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing stable vector bundles from curves with torsion normal bundle
Given a smooth irreducible curve $S$ with torsion normal bundle on a projective surface $X$, we provide a criterion for the non-emptiness of the moduli of slope stable vector bundles with prescribed Chern classes. The criterion is given in terms of the topology of the pair $(X,S)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica Scandinavica
Mathematica Scandinavica 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length. Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months. All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信