Hartree方程量子传播的最大速度

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
J. Arbunich, J. Faupin, F. Pusateri, I. Sigal
{"title":"Hartree方程量子传播的最大速度","authors":"J. Arbunich, J. Faupin, F. Pusateri, I. Sigal","doi":"10.1080/03605302.2023.2183408","DOIUrl":null,"url":null,"abstract":"Abstract We prove maximal speed estimates for nonlinear quantum propagation in the context of the Hartree equation. More precisely, under some regularity and integrability assumptions on the pair (convolution) potential, we construct a set of energy and space localized initial conditions such that, up to time-decaying tails, solutions starting in this set stay within the light cone of the corresponding initial datum. We quantify precisely the light cone speed, and hence the speed of nonlinear propagation, in terms of the momentum of the initial state.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Maximal speed of quantum propagation for the Hartree equation\",\"authors\":\"J. Arbunich, J. Faupin, F. Pusateri, I. Sigal\",\"doi\":\"10.1080/03605302.2023.2183408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove maximal speed estimates for nonlinear quantum propagation in the context of the Hartree equation. More precisely, under some regularity and integrability assumptions on the pair (convolution) potential, we construct a set of energy and space localized initial conditions such that, up to time-decaying tails, solutions starting in this set stay within the light cone of the corresponding initial datum. We quantify precisely the light cone speed, and hence the speed of nonlinear propagation, in terms of the momentum of the initial state.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2023.2183408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2183408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

摘要

摘要我们在Hartree方程的背景下证明了非线性量子传播的最大速度估计。更准确地说,在对(卷积)势的一些正则性和可积性假设下,我们构造了一组能量和空间局部化的初始条件,使得在时间衰减尾之前,从该集合开始的解保持在相应初始数据的光锥内。根据初始状态的动量,我们精确地量化了光锥的速度,从而量化了非线性传播的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal speed of quantum propagation for the Hartree equation
Abstract We prove maximal speed estimates for nonlinear quantum propagation in the context of the Hartree equation. More precisely, under some regularity and integrability assumptions on the pair (convolution) potential, we construct a set of energy and space localized initial conditions such that, up to time-decaying tails, solutions starting in this set stay within the light cone of the corresponding initial datum. We quantify precisely the light cone speed, and hence the speed of nonlinear propagation, in terms of the momentum of the initial state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信