红色LED补光农光伏系统下大葱生长及农艺性状研究

Q3 Social Sciences
B. Kim, S. Suh, Wook Oh, S. Oh, Jae Hak Jung
{"title":"红色LED补光农光伏系统下大葱生长及农艺性状研究","authors":"B. Kim, S. Suh, Wook Oh, S. Oh, Jae Hak Jung","doi":"10.11628/ksppe.2023.26.1.1","DOIUrl":null,"url":null,"abstract":"Background and objective: An agrovoltaic system is a power generation method applying photovoltaics (PV) to crops cultivated on a farm. Usually, the PV system covers less than 30% of the upper surface of crops on the ground. If the PV system covers the upper layer of the crops, the yield will decrease by 15-20% due to the shading of the PV module. This study was carried out to investigate the effects of red supplemental light-emitting diode (LED) lighting under the PV system on growth and agronomic traits of green onions.Methods: To resolve the issue about decreasing yield, we constructed a 50 kW agrovoltaic system with the red (660 nm peak) LED dimming facility on the farm with 3 different plots for comparison. The 1st was PV + LED (two parts of dimming area: 3 hours and 6 hours). The second was only PV, and the last was a reference for comparison of yield (control plot). We transplanted uniform seedlings of green onions on three areas of the farm on June 23, 2020. We used red LED lighting for 3 hours and 6 hours after sunset and harvested green onions on October 25, 2020. We used less than 1% of electricity of total power generated by the agrovoltaic system for supplemental LED lighting.Results: The result of harvesting under the agrovoltaic system with 3 hours of lighting showed that there was 38% more yield than the control plot. We also discovered the optimal amount of supplemental LED lighting because even 6 hours of lighting were not better than 3 hours.Conclusion: Applying supplemental LED lighting after sunset can compensate for the yield decrease. The LED supplemental lighting for 3 hours is optimal for crop harvest. We expect that this system can be helpful to farmers who want to construct an agrovoltaic system.","PeriodicalId":52383,"journal":{"name":"Journal of People, Plants, and Environment","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth and Agronomic Traits of Green Onion under the Agrovoltaic System with Red Supplemental LED Lighting\",\"authors\":\"B. Kim, S. Suh, Wook Oh, S. Oh, Jae Hak Jung\",\"doi\":\"10.11628/ksppe.2023.26.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and objective: An agrovoltaic system is a power generation method applying photovoltaics (PV) to crops cultivated on a farm. Usually, the PV system covers less than 30% of the upper surface of crops on the ground. If the PV system covers the upper layer of the crops, the yield will decrease by 15-20% due to the shading of the PV module. This study was carried out to investigate the effects of red supplemental light-emitting diode (LED) lighting under the PV system on growth and agronomic traits of green onions.Methods: To resolve the issue about decreasing yield, we constructed a 50 kW agrovoltaic system with the red (660 nm peak) LED dimming facility on the farm with 3 different plots for comparison. The 1st was PV + LED (two parts of dimming area: 3 hours and 6 hours). The second was only PV, and the last was a reference for comparison of yield (control plot). We transplanted uniform seedlings of green onions on three areas of the farm on June 23, 2020. We used red LED lighting for 3 hours and 6 hours after sunset and harvested green onions on October 25, 2020. We used less than 1% of electricity of total power generated by the agrovoltaic system for supplemental LED lighting.Results: The result of harvesting under the agrovoltaic system with 3 hours of lighting showed that there was 38% more yield than the control plot. We also discovered the optimal amount of supplemental LED lighting because even 6 hours of lighting were not better than 3 hours.Conclusion: Applying supplemental LED lighting after sunset can compensate for the yield decrease. The LED supplemental lighting for 3 hours is optimal for crop harvest. We expect that this system can be helpful to farmers who want to construct an agrovoltaic system.\",\"PeriodicalId\":52383,\"journal\":{\"name\":\"Journal of People, Plants, and Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of People, Plants, and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11628/ksppe.2023.26.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of People, Plants, and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11628/ksppe.2023.26.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

背景与目的:农业光伏发电系统是一种利用光伏发电(PV)在农场种植作物的发电方法。通常,光伏系统覆盖不到30%的作物上表面的地面。如果光伏系统覆盖作物的上层,由于光伏组件的遮阳,产量将下降15-20%。本试验旨在研究光伏系统下红色发光二极管(LED)照明对大葱生长和农艺性状的影响。方法:为解决产量下降的问题,我们在农场搭建了一个50 kW的农光伏系统,并在3个不同的地块进行比较。第一种是PV + LED(调光区域分为3小时和6小时两部分)。第二个仅为PV,最后一个为产量比较参考(对照图)。2020年6月23日,我们在农场的三个区域移植了均匀的大葱幼苗。我们在日落后使用红色LED照明3小时和6小时,并于2020年10月25日收获大葱。我们用不到农业光伏发电系统总发电量的1%的电力来补充LED照明。结果:在农光伏系统下光照3 h的收获结果显示,产量比对照提高38%。我们还发现了补充LED照明的最佳数量,因为即使6小时的照明也不会超过3小时。结论:日落后采用LED补充照明可以弥补产量的下降。LED补充照明3小时最适合作物收获。希望该系统能对想要构建农光伏发电系统的农民有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth and Agronomic Traits of Green Onion under the Agrovoltaic System with Red Supplemental LED Lighting
Background and objective: An agrovoltaic system is a power generation method applying photovoltaics (PV) to crops cultivated on a farm. Usually, the PV system covers less than 30% of the upper surface of crops on the ground. If the PV system covers the upper layer of the crops, the yield will decrease by 15-20% due to the shading of the PV module. This study was carried out to investigate the effects of red supplemental light-emitting diode (LED) lighting under the PV system on growth and agronomic traits of green onions.Methods: To resolve the issue about decreasing yield, we constructed a 50 kW agrovoltaic system with the red (660 nm peak) LED dimming facility on the farm with 3 different plots for comparison. The 1st was PV + LED (two parts of dimming area: 3 hours and 6 hours). The second was only PV, and the last was a reference for comparison of yield (control plot). We transplanted uniform seedlings of green onions on three areas of the farm on June 23, 2020. We used red LED lighting for 3 hours and 6 hours after sunset and harvested green onions on October 25, 2020. We used less than 1% of electricity of total power generated by the agrovoltaic system for supplemental LED lighting.Results: The result of harvesting under the agrovoltaic system with 3 hours of lighting showed that there was 38% more yield than the control plot. We also discovered the optimal amount of supplemental LED lighting because even 6 hours of lighting were not better than 3 hours.Conclusion: Applying supplemental LED lighting after sunset can compensate for the yield decrease. The LED supplemental lighting for 3 hours is optimal for crop harvest. We expect that this system can be helpful to farmers who want to construct an agrovoltaic system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of People, Plants, and Environment
Journal of People, Plants, and Environment Social Sciences-Urban Studies
CiteScore
1.10
自引率
0.00%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信