{"title":"一类具有对角哈密顿算子的缺正则系统的反问题","authors":"Masatoshi Suzuki","doi":"10.2748/tmj.20210816","DOIUrl":null,"url":null,"abstract":"Hamiltonians are 2-by-2 positive semidefinite real symmetric matrix-valued functions satisfying certain conditions. In this paper, we solve the inverse problem for which recovers a Hamiltonian from the solution of a first-order system attached to a given Hamiltonian, consisting of ordinary differential equations parametrized by a set of complex numbers, under certain conditions for the solutions. This inverse problem is a generalization of the inverse problem for two-dimensional canonical systems.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An inverse problem for a class of lacunary canonical systems with diagonal Hamiltonian\",\"authors\":\"Masatoshi Suzuki\",\"doi\":\"10.2748/tmj.20210816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hamiltonians are 2-by-2 positive semidefinite real symmetric matrix-valued functions satisfying certain conditions. In this paper, we solve the inverse problem for which recovers a Hamiltonian from the solution of a first-order system attached to a given Hamiltonian, consisting of ordinary differential equations parametrized by a set of complex numbers, under certain conditions for the solutions. This inverse problem is a generalization of the inverse problem for two-dimensional canonical systems.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20210816\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20210816","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
An inverse problem for a class of lacunary canonical systems with diagonal Hamiltonian
Hamiltonians are 2-by-2 positive semidefinite real symmetric matrix-valued functions satisfying certain conditions. In this paper, we solve the inverse problem for which recovers a Hamiltonian from the solution of a first-order system attached to a given Hamiltonian, consisting of ordinary differential equations parametrized by a set of complex numbers, under certain conditions for the solutions. This inverse problem is a generalization of the inverse problem for two-dimensional canonical systems.