基于RGB-D视频流的室内场景三维目标高效检测

Q3 Computer Science
Miao Yongwei, Jiahui Chen, Xinjie Zhang, Ma Wenjuan, S. Sun
{"title":"基于RGB-D视频流的室内场景三维目标高效检测","authors":"Miao Yongwei, Jiahui Chen, Xinjie Zhang, Ma Wenjuan, S. Sun","doi":"10.3724/sp.j.1089.2021.18630","DOIUrl":null,"url":null,"abstract":": For indoor object detection, the input complex scenes often have some defects such as incomplete RGB-D scanning data or mutual occlusion of its objects. Meanwhile, due to the limitations of frame in the RGB-D video stream. Using SUN RGB-D dataset to train the object detection network of key frame, the detection result of proposed method is accurate, and the overall detection time is greatly reduced if com-paring with the VoteNet based frame-by-frame detection scheme. Experimental results demonstrate that proposed method is effective and efficient.","PeriodicalId":52442,"journal":{"name":"计算机辅助设计与图形学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient 3D Object Detection of Indoor Scenes Based on RGB-D Video Stream\",\"authors\":\"Miao Yongwei, Jiahui Chen, Xinjie Zhang, Ma Wenjuan, S. Sun\",\"doi\":\"10.3724/sp.j.1089.2021.18630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": For indoor object detection, the input complex scenes often have some defects such as incomplete RGB-D scanning data or mutual occlusion of its objects. Meanwhile, due to the limitations of frame in the RGB-D video stream. Using SUN RGB-D dataset to train the object detection network of key frame, the detection result of proposed method is accurate, and the overall detection time is greatly reduced if com-paring with the VoteNet based frame-by-frame detection scheme. Experimental results demonstrate that proposed method is effective and efficient.\",\"PeriodicalId\":52442,\"journal\":{\"name\":\"计算机辅助设计与图形学学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算机辅助设计与图形学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/sp.j.1089.2021.18630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机辅助设计与图形学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/sp.j.1089.2021.18630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

:对于室内目标检测,输入的复杂场景往往存在RGB-D扫描数据不完整或其目标相互遮挡等缺陷。同时,由于RGB-D视频流中帧数的限制。利用SUN RGB-D数据集对关键帧的目标检测网络进行训练,检测结果准确,与基于VoteNet的逐帧检测方案相比,整体检测时间大大缩短。实验结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient 3D Object Detection of Indoor Scenes Based on RGB-D Video Stream
: For indoor object detection, the input complex scenes often have some defects such as incomplete RGB-D scanning data or mutual occlusion of its objects. Meanwhile, due to the limitations of frame in the RGB-D video stream. Using SUN RGB-D dataset to train the object detection network of key frame, the detection result of proposed method is accurate, and the overall detection time is greatly reduced if com-paring with the VoteNet based frame-by-frame detection scheme. Experimental results demonstrate that proposed method is effective and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
计算机辅助设计与图形学学报
计算机辅助设计与图形学学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6833
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信