{"title":"H-Darrieus风力发电机转子坚固性和叶型影响的实验研究:性能和自启动分析","authors":"Kanthala Uma Reddy, Bachu Deb, B. Roy","doi":"10.1063/5.0159494","DOIUrl":null,"url":null,"abstract":"The present study investigates the impact of rotor solidity and blade profile on the self-starting characteristics and performance of H-Darrieus wind rotors (H-rotors) through subsonic wind tunnel experiments. Three symmetrical (NACA 0018) and three unsymmetrical (NREL S823) H-rotors were analyzed to determine the coefficient of static torque (Cts) and coefficient of power (Cp) across three solidities (σ = 0.25, 0.3, and 0.35) and two free stream wind speeds (Uf = 6 and 8 m/s). The findings revealed that the NREL S823-bladed H-rotor outperformed the NACA 0018-bladed H-rotor, displaying 13% and 11% higher Cts values at σ = 0.25 (Uf = 6 and 8 m/s), 9% and 9% at σ = 0.3 (Uf = 6 and 8 m/s), and 13% and 11% at σ = 0.35 (Uf = 6 and 8 m/s). The NREL S823-bladed H-rotor achieved a maximum Cp of 0.197 at σ = 0.3 and Uf = 8 m/s, which is 6% higher than the maximum Cp obtained by the NACA 0018-bladed H-rotor. Furthermore, the trend of maximum Cp values for both H-rotors followed the order of Cp, max σ = 0.25 < Cp, max σ = 0.3 > Cp, max σ = 0.35. Based on the experimental findings, it is inferred that the NREL S823-bladed H-rotor with a solidity of 0.3 is suitable for small-scale wind turbines.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of solidity and blade profile effects on H-Darrieus wind rotor: Performance and self-starting analysis\",\"authors\":\"Kanthala Uma Reddy, Bachu Deb, B. Roy\",\"doi\":\"10.1063/5.0159494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study investigates the impact of rotor solidity and blade profile on the self-starting characteristics and performance of H-Darrieus wind rotors (H-rotors) through subsonic wind tunnel experiments. Three symmetrical (NACA 0018) and three unsymmetrical (NREL S823) H-rotors were analyzed to determine the coefficient of static torque (Cts) and coefficient of power (Cp) across three solidities (σ = 0.25, 0.3, and 0.35) and two free stream wind speeds (Uf = 6 and 8 m/s). The findings revealed that the NREL S823-bladed H-rotor outperformed the NACA 0018-bladed H-rotor, displaying 13% and 11% higher Cts values at σ = 0.25 (Uf = 6 and 8 m/s), 9% and 9% at σ = 0.3 (Uf = 6 and 8 m/s), and 13% and 11% at σ = 0.35 (Uf = 6 and 8 m/s). The NREL S823-bladed H-rotor achieved a maximum Cp of 0.197 at σ = 0.3 and Uf = 8 m/s, which is 6% higher than the maximum Cp obtained by the NACA 0018-bladed H-rotor. Furthermore, the trend of maximum Cp values for both H-rotors followed the order of Cp, max σ = 0.25 < Cp, max σ = 0.3 > Cp, max σ = 0.35. Based on the experimental findings, it is inferred that the NREL S823-bladed H-rotor with a solidity of 0.3 is suitable for small-scale wind turbines.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0159494\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0159494","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental investigation of solidity and blade profile effects on H-Darrieus wind rotor: Performance and self-starting analysis
The present study investigates the impact of rotor solidity and blade profile on the self-starting characteristics and performance of H-Darrieus wind rotors (H-rotors) through subsonic wind tunnel experiments. Three symmetrical (NACA 0018) and three unsymmetrical (NREL S823) H-rotors were analyzed to determine the coefficient of static torque (Cts) and coefficient of power (Cp) across three solidities (σ = 0.25, 0.3, and 0.35) and two free stream wind speeds (Uf = 6 and 8 m/s). The findings revealed that the NREL S823-bladed H-rotor outperformed the NACA 0018-bladed H-rotor, displaying 13% and 11% higher Cts values at σ = 0.25 (Uf = 6 and 8 m/s), 9% and 9% at σ = 0.3 (Uf = 6 and 8 m/s), and 13% and 11% at σ = 0.35 (Uf = 6 and 8 m/s). The NREL S823-bladed H-rotor achieved a maximum Cp of 0.197 at σ = 0.3 and Uf = 8 m/s, which is 6% higher than the maximum Cp obtained by the NACA 0018-bladed H-rotor. Furthermore, the trend of maximum Cp values for both H-rotors followed the order of Cp, max σ = 0.25 < Cp, max σ = 0.3 > Cp, max σ = 0.35. Based on the experimental findings, it is inferred that the NREL S823-bladed H-rotor with a solidity of 0.3 is suitable for small-scale wind turbines.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy