{"title":"具有扰动的反馈混沌同步","authors":"Mingjun Wang, Wanbo Yu, Jing Zhao","doi":"10.4236/IJMNTA.2017.61001","DOIUrl":null,"url":null,"abstract":"Based on Lyapunov stability theorem, a method is proposed for feedback synchronization with parameters perturbation and external disturbances. It is proved theoretically that if the perturbation and disturbances are bounded, the synchronization error can be ensured to approach to and stay within the pre-specified bound which can be arbitrarily small. Some typical chaotic systems with different types of nonlinearity, such as Lorenz system and the original Chua’s circuit, are used for detailed description. The simulation results show the feasibility of the method.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feedback Chaotic Synchronization with Disturbances\",\"authors\":\"Mingjun Wang, Wanbo Yu, Jing Zhao\",\"doi\":\"10.4236/IJMNTA.2017.61001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on Lyapunov stability theorem, a method is proposed for feedback synchronization with parameters perturbation and external disturbances. It is proved theoretically that if the perturbation and disturbances are bounded, the synchronization error can be ensured to approach to and stay within the pre-specified bound which can be arbitrarily small. Some typical chaotic systems with different types of nonlinearity, such as Lorenz system and the original Chua’s circuit, are used for detailed description. The simulation results show the feasibility of the method.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMNTA.2017.61001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2017.61001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feedback Chaotic Synchronization with Disturbances
Based on Lyapunov stability theorem, a method is proposed for feedback synchronization with parameters perturbation and external disturbances. It is proved theoretically that if the perturbation and disturbances are bounded, the synchronization error can be ensured to approach to and stay within the pre-specified bound which can be arbitrarily small. Some typical chaotic systems with different types of nonlinearity, such as Lorenz system and the original Chua’s circuit, are used for detailed description. The simulation results show the feasibility of the method.