Triphala与HMG-CoA还原酶催化部分的分子对接研究

Q3 Pharmacology, Toxicology and Pharmaceutics
P. Rinthong, P. Pulbutr, Chawannuch Mudjupa
{"title":"Triphala与HMG-CoA还原酶催化部分的分子对接研究","authors":"P. Rinthong, P. Pulbutr, Chawannuch Mudjupa","doi":"10.34172/jhp.2023.28","DOIUrl":null,"url":null,"abstract":"Introduction: Triphala, consisting of three fruits, Phyllanthus emblica L. (Phyllanthaceae), Terminalia bellirica (Gaertn.) Roxb. (Combretaceae), and T. chebula Retz, is a well-recognized Ayurvedic herbal formulation, used for various therapeutic purposes, including the treatment of dyslipidemia. Inhibitory activity against 3‑hydroxy‑3‑methylglutaryl‑coenzyme A (HMG‑CoA) reductase, a rate-limiting enzyme in the endogenous cholesterol synthesis pathway, is an essential target for the management of hypercholesterolemia. This in silico study aimed to investigate the HMG-CoA reductase inhibitory activity of the phytochemical compounds derived from Triphala formulation by employing molecular docking analysis. Methods: Ten phytochemical constituents of Triphala formulation were selectively used for docking study by using the HMG-CoA reductase template (PDB: 1HWK). Docking analysis was performed using AutoDock 4.2. The candidates were ranked by the binding energy parameters. Results: From the docking studies, the phytochemical compounds with HMG-CoA reductase inhibition could be classified into 4 groups, including phytosterols, polyphenols, tannins, and flavonoids. Beta-sitosterol exhibited the highest binding affinity to HMG-CoA reductase with a binding energy of -7.75 kcal/mol. Conclusion: These 10 phytochemical compounds in Triphala potentially exert their cholesterol-lowering effects via inhibition against HMG-CoA reductase. Nonetheless, further in vitro and in vivo experiments should be conducted subsequently to confirm this finding.","PeriodicalId":15934,"journal":{"name":"Journal of HerbMed Pharmacology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Molecular docking studies of Triphala with catalytic portion of HMG-CoA reductase enzyme\",\"authors\":\"P. Rinthong, P. Pulbutr, Chawannuch Mudjupa\",\"doi\":\"10.34172/jhp.2023.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Triphala, consisting of three fruits, Phyllanthus emblica L. (Phyllanthaceae), Terminalia bellirica (Gaertn.) Roxb. (Combretaceae), and T. chebula Retz, is a well-recognized Ayurvedic herbal formulation, used for various therapeutic purposes, including the treatment of dyslipidemia. Inhibitory activity against 3‑hydroxy‑3‑methylglutaryl‑coenzyme A (HMG‑CoA) reductase, a rate-limiting enzyme in the endogenous cholesterol synthesis pathway, is an essential target for the management of hypercholesterolemia. This in silico study aimed to investigate the HMG-CoA reductase inhibitory activity of the phytochemical compounds derived from Triphala formulation by employing molecular docking analysis. Methods: Ten phytochemical constituents of Triphala formulation were selectively used for docking study by using the HMG-CoA reductase template (PDB: 1HWK). Docking analysis was performed using AutoDock 4.2. The candidates were ranked by the binding energy parameters. Results: From the docking studies, the phytochemical compounds with HMG-CoA reductase inhibition could be classified into 4 groups, including phytosterols, polyphenols, tannins, and flavonoids. Beta-sitosterol exhibited the highest binding affinity to HMG-CoA reductase with a binding energy of -7.75 kcal/mol. Conclusion: These 10 phytochemical compounds in Triphala potentially exert their cholesterol-lowering effects via inhibition against HMG-CoA reductase. Nonetheless, further in vitro and in vivo experiments should be conducted subsequently to confirm this finding.\",\"PeriodicalId\":15934,\"journal\":{\"name\":\"Journal of HerbMed Pharmacology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of HerbMed Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/jhp.2023.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of HerbMed Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jhp.2023.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1

摘要

简介:triphia,由三种果实组成,Phyllanthus emblica L. (Phyllanthaceae), Terminalia bellirica (Gaertn.)。Roxb。(combretacae)和T. chebula Retz,是一种公认的阿育吠陀草药配方,用于各种治疗目的,包括治疗血脂异常。3 -羟基- 3 -甲基戊二酰辅酶A (HMG - CoA)还原酶的抑制活性是内源性胆固醇合成途径中的限速酶,是治疗高胆固醇血症的重要目标。本研究旨在通过分子对接分析的方法,研究从Triphala制剂中提取的植物化学物质对HMG-CoA还原酶的抑制活性。方法:采用HMG-CoA还原酶模板(PDB: 1HWK),对Triphala制剂中的10种植物化学成分进行选择性对接研究。使用AutoDock 4.2进行对接分析。根据结合能参数对候选粒子进行排序。结果:通过对接研究,对HMG-CoA还原酶具有抑制作用的植物化学物质可分为4类,包括植物甾醇类、多酚类、单宁类和黄酮类。β -谷甾醇对HMG-CoA还原酶的结合亲和力最高,结合能为-7.75 kcal/mol。结论:这10种化合物可能通过抑制HMG-CoA还原酶发挥降胆固醇作用。尽管如此,还需要进一步进行体内和体外实验来证实这一发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular docking studies of Triphala with catalytic portion of HMG-CoA reductase enzyme
Introduction: Triphala, consisting of three fruits, Phyllanthus emblica L. (Phyllanthaceae), Terminalia bellirica (Gaertn.) Roxb. (Combretaceae), and T. chebula Retz, is a well-recognized Ayurvedic herbal formulation, used for various therapeutic purposes, including the treatment of dyslipidemia. Inhibitory activity against 3‑hydroxy‑3‑methylglutaryl‑coenzyme A (HMG‑CoA) reductase, a rate-limiting enzyme in the endogenous cholesterol synthesis pathway, is an essential target for the management of hypercholesterolemia. This in silico study aimed to investigate the HMG-CoA reductase inhibitory activity of the phytochemical compounds derived from Triphala formulation by employing molecular docking analysis. Methods: Ten phytochemical constituents of Triphala formulation were selectively used for docking study by using the HMG-CoA reductase template (PDB: 1HWK). Docking analysis was performed using AutoDock 4.2. The candidates were ranked by the binding energy parameters. Results: From the docking studies, the phytochemical compounds with HMG-CoA reductase inhibition could be classified into 4 groups, including phytosterols, polyphenols, tannins, and flavonoids. Beta-sitosterol exhibited the highest binding affinity to HMG-CoA reductase with a binding energy of -7.75 kcal/mol. Conclusion: These 10 phytochemical compounds in Triphala potentially exert their cholesterol-lowering effects via inhibition against HMG-CoA reductase. Nonetheless, further in vitro and in vivo experiments should be conducted subsequently to confirm this finding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of HerbMed Pharmacology
Journal of HerbMed Pharmacology Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
2.50
自引率
0.00%
发文量
49
审稿时长
12 weeks
期刊介绍: Journal of Herbmed Pharmacology (J Herbmed Pharmacol) is the intersection between medicinal plants and pharmacology. This international journal publishes manuscripts in the fields of medicinal plants, pharmacology and therapeutic. This journal aims to reach all relevant national and international medical institutions and persons in electronic version free of charge. J Herbmed Pharmacol has pursued this aim through publishing editorials, original research articles, reviews, mini-reviews, commentaries, letters to the editor, hypothesis, case reports, epidemiology and prevention, news and views. In this journal, particular emphasis is given to research, both experimental and clinical, aimed at protection/prevention of diseases. A further aim of this journal is to emphasize and strengthen the link between herbalists and pharmacologists. In addition, J Herbmed Pharmacol welcomes basic biomedical as well as pharmaceutical scientific research applied to clinical pharmacology. Contributions in any of these formats are invited for editorial consideration following peer review by at least two experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信