一种基于语音识别的在线智能电子病历系统

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xin Xia, Yunlong Ma, Ye Luo, Jianwei Lu
{"title":"一种基于语音识别的在线智能电子病历系统","authors":"Xin Xia, Yunlong Ma, Ye Luo, Jianwei Lu","doi":"10.1177/15501329221134479","DOIUrl":null,"url":null,"abstract":"Traditional electronic medical record systems in hospitals rely on healthcare workers to manually enter patient information, resulting in healthcare workers having to spend a significant amount of time each day filling out electronic medical records. This inefficient interaction seriously affects the communication between doctors and patients and reduces the speed at which doctors can diagnose patients’ conditions. The rapid development of deep learning–based speech recognition technology promises to improve this situation. In this work, we build an online electronic medical record system based on speech interaction. The system integrates a medical linguistic knowledge base, a specialized language model, a personalized acoustic model, and a fault-tolerance mechanism. Hence, we propose and develop an advanced electronic medical record system approach with multi-accent adaptive technology for avoiding the mistakes caused by accents, and it improves the accuracy of speech recognition obviously. For testing the proposed speech recognition electronic medical record system, we construct medical speech recognition data sets using audio and electronic medical records from real medical environments. On the data sets from real clinical scenarios, our proposed algorithm significantly outperforms other machine learning algorithms. Furthermore, compared to traditional electronic medical record systems that rely on keyboard inputs, our system is much more efficient, and its accuracy rate increases with the increasing online time of the proposed system. Our results show that the proposed electronic medical record system is expected to revolutionize the traditional working approach of clinical departments, and it serves more efficient in clinics with low time consumption compared with traditional electronic medical record systems depending on keyboard inputs, which has less recording mistakes and lows down the time consumption in modification of medical recordings; due to the proposed speech recognition electronic medical record system is built on knowledge database of medical terms, so it has a good generalized application and adaption in the clinical scenarios for hospitals.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An online intelligent electronic medical record system via speech recognition\",\"authors\":\"Xin Xia, Yunlong Ma, Ye Luo, Jianwei Lu\",\"doi\":\"10.1177/15501329221134479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional electronic medical record systems in hospitals rely on healthcare workers to manually enter patient information, resulting in healthcare workers having to spend a significant amount of time each day filling out electronic medical records. This inefficient interaction seriously affects the communication between doctors and patients and reduces the speed at which doctors can diagnose patients’ conditions. The rapid development of deep learning–based speech recognition technology promises to improve this situation. In this work, we build an online electronic medical record system based on speech interaction. The system integrates a medical linguistic knowledge base, a specialized language model, a personalized acoustic model, and a fault-tolerance mechanism. Hence, we propose and develop an advanced electronic medical record system approach with multi-accent adaptive technology for avoiding the mistakes caused by accents, and it improves the accuracy of speech recognition obviously. For testing the proposed speech recognition electronic medical record system, we construct medical speech recognition data sets using audio and electronic medical records from real medical environments. On the data sets from real clinical scenarios, our proposed algorithm significantly outperforms other machine learning algorithms. Furthermore, compared to traditional electronic medical record systems that rely on keyboard inputs, our system is much more efficient, and its accuracy rate increases with the increasing online time of the proposed system. Our results show that the proposed electronic medical record system is expected to revolutionize the traditional working approach of clinical departments, and it serves more efficient in clinics with low time consumption compared with traditional electronic medical record systems depending on keyboard inputs, which has less recording mistakes and lows down the time consumption in modification of medical recordings; due to the proposed speech recognition electronic medical record system is built on knowledge database of medical terms, so it has a good generalized application and adaption in the clinical scenarios for hospitals.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221134479\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221134479","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

医院中的传统电子病历系统依赖医护人员手动输入患者信息,导致医护人员每天必须花费大量时间填写电子病历。这种低效的互动严重影响了医生和患者之间的沟通,降低了医生诊断患者病情的速度。基于深度学习的语音识别技术的快速发展有望改善这种情况。在这项工作中,我们建立了一个基于语音交互的在线电子病历系统。该系统集成了医学语言学知识库、专业语言模型、个性化声学模型和容错机制。因此,我们提出并开发了一种先进的电子病历系统方法,该方法采用多重音自适应技术来避免由重音引起的错误,并显著提高了语音识别的准确性。为了测试所提出的语音识别电子病历系统,我们使用真实医疗环境中的音频和电子病历构建了医疗语音识别数据集。在真实临床场景的数据集上,我们提出的算法显著优于其他机器学习算法。此外,与依赖键盘输入的传统电子病历系统相比,我们的系统效率高得多,并且其准确率随着所提出系统的在线时间的增加而增加。我们的研究结果表明,所提出的电子病历系统有望彻底改变临床部门的传统工作方法,与依赖键盘输入的传统电子病历系统相比,它在低时间消耗的诊所中更高效,其具有较少的记录错误并且降低了修改医疗记录的时间消耗;由于所提出的语音识别电子病历系统是建立在医学术语知识库上的,因此在医院的临床场景中具有良好的通用性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An online intelligent electronic medical record system via speech recognition
Traditional electronic medical record systems in hospitals rely on healthcare workers to manually enter patient information, resulting in healthcare workers having to spend a significant amount of time each day filling out electronic medical records. This inefficient interaction seriously affects the communication between doctors and patients and reduces the speed at which doctors can diagnose patients’ conditions. The rapid development of deep learning–based speech recognition technology promises to improve this situation. In this work, we build an online electronic medical record system based on speech interaction. The system integrates a medical linguistic knowledge base, a specialized language model, a personalized acoustic model, and a fault-tolerance mechanism. Hence, we propose and develop an advanced electronic medical record system approach with multi-accent adaptive technology for avoiding the mistakes caused by accents, and it improves the accuracy of speech recognition obviously. For testing the proposed speech recognition electronic medical record system, we construct medical speech recognition data sets using audio and electronic medical records from real medical environments. On the data sets from real clinical scenarios, our proposed algorithm significantly outperforms other machine learning algorithms. Furthermore, compared to traditional electronic medical record systems that rely on keyboard inputs, our system is much more efficient, and its accuracy rate increases with the increasing online time of the proposed system. Our results show that the proposed electronic medical record system is expected to revolutionize the traditional working approach of clinical departments, and it serves more efficient in clinics with low time consumption compared with traditional electronic medical record systems depending on keyboard inputs, which has less recording mistakes and lows down the time consumption in modification of medical recordings; due to the proposed speech recognition electronic medical record system is built on knowledge database of medical terms, so it has a good generalized application and adaption in the clinical scenarios for hospitals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
4.30%
发文量
94
审稿时长
3.6 months
期刊介绍: International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信