K. Maciuk, K. Kozioł, Karolina Krzykowska-Piotrowska, Yasemin Şişman
{"title":"全球定位系统、格洛纳斯系统和伽利略系统时钟长期稳定性的变化","authors":"K. Maciuk, K. Kozioł, Karolina Krzykowska-Piotrowska, Yasemin Şişman","doi":"10.1515/jag-2023-0010","DOIUrl":null,"url":null,"abstract":"Abstract Time is the basis of satellite navigation systems. In precision studies, it is additionally important to ensure accuracy at the highest possible level, up to sub-millimetres. For this purpose, corrections of the clocks of satellites and GNSS reference stations are made available. This type of data is made available in real time in a navigation dispatch with an interval of 10 min–2 h depending on the GNSS system, or in a precision orbit file (interval of 15 min) or in the form of clock correction files (30 s or 300 s). This paper analyses the long-term stability of the clocks of satellites of four GNSS systems. For this purpose, IGS reprocessing data from 1994 to 2020 were used and ADEV (Allan deviation) and three related variances were adopted. The study showed the different nature of the satellite correction for each GNSS system and the increase of the stability over time.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in the long-term stability of GPS, GLONASS and Galileo clocks based on the IGS repro3 campaign\",\"authors\":\"K. Maciuk, K. Kozioł, Karolina Krzykowska-Piotrowska, Yasemin Şişman\",\"doi\":\"10.1515/jag-2023-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Time is the basis of satellite navigation systems. In precision studies, it is additionally important to ensure accuracy at the highest possible level, up to sub-millimetres. For this purpose, corrections of the clocks of satellites and GNSS reference stations are made available. This type of data is made available in real time in a navigation dispatch with an interval of 10 min–2 h depending on the GNSS system, or in a precision orbit file (interval of 15 min) or in the form of clock correction files (30 s or 300 s). This paper analyses the long-term stability of the clocks of satellites of four GNSS systems. For this purpose, IGS reprocessing data from 1994 to 2020 were used and ADEV (Allan deviation) and three related variances were adopted. The study showed the different nature of the satellite correction for each GNSS system and the increase of the stability over time.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2023-0010\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2023-0010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Changes in the long-term stability of GPS, GLONASS and Galileo clocks based on the IGS repro3 campaign
Abstract Time is the basis of satellite navigation systems. In precision studies, it is additionally important to ensure accuracy at the highest possible level, up to sub-millimetres. For this purpose, corrections of the clocks of satellites and GNSS reference stations are made available. This type of data is made available in real time in a navigation dispatch with an interval of 10 min–2 h depending on the GNSS system, or in a precision orbit file (interval of 15 min) or in the form of clock correction files (30 s or 300 s). This paper analyses the long-term stability of the clocks of satellites of four GNSS systems. For this purpose, IGS reprocessing data from 1994 to 2020 were used and ADEV (Allan deviation) and three related variances were adopted. The study showed the different nature of the satellite correction for each GNSS system and the increase of the stability over time.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.