关于Weierstrass $\sigma$-函数的代数值

IF 0.6 4区 数学 Q3 MATHEMATICS
Gareth Boxall, T. Chalebgwa, G. Jones
{"title":"关于Weierstrass $\\sigma$-函数的代数值","authors":"Gareth Boxall, T. Chalebgwa, G. Jones","doi":"10.4171/rlm/960","DOIUrl":null,"url":null,"abstract":"Suppose that $\\Omega$ is a lattice in the complex plane and let $\\sigma$ be the corresponding Weierstrass $\\sigma$-function. Assume that the point $\\tau$ associated to $\\Omega$ in the standard fundamental domain has imaginary part at most 1.9. Assuming that $\\Omega$ has algebraic invariants $g_2,g_3$ we show that a bound of the form $c d^m (\\log H)^n$ holds for the number of algebraic points of height at most $H$ and degree at most $d$ lying on the graph of $\\sigma$. To prove this we apply results by Masser and Besson. What is perhaps surprising is that we are able to establish such a bound for the whole graph, rather than some restriction. We prove a similar result when, instead of $g_2,g_3$, the lattice points are algebraic. For this we naturally exclude those $(z,\\sigma(z))$ for which $z\\in\\Omega$.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On algebraic values of Weierstrass $\\\\sigma$-functions\",\"authors\":\"Gareth Boxall, T. Chalebgwa, G. Jones\",\"doi\":\"10.4171/rlm/960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that $\\\\Omega$ is a lattice in the complex plane and let $\\\\sigma$ be the corresponding Weierstrass $\\\\sigma$-function. Assume that the point $\\\\tau$ associated to $\\\\Omega$ in the standard fundamental domain has imaginary part at most 1.9. Assuming that $\\\\Omega$ has algebraic invariants $g_2,g_3$ we show that a bound of the form $c d^m (\\\\log H)^n$ holds for the number of algebraic points of height at most $H$ and degree at most $d$ lying on the graph of $\\\\sigma$. To prove this we apply results by Masser and Besson. What is perhaps surprising is that we are able to establish such a bound for the whole graph, rather than some restriction. We prove a similar result when, instead of $g_2,g_3$, the lattice points are algebraic. For this we naturally exclude those $(z,\\\\sigma(z))$ for which $z\\\\in\\\\Omega$.\",\"PeriodicalId\":54497,\"journal\":{\"name\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rlm/960\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rlm/960","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$\Omega$为复平面上的晶格,设$\sigma$为对应的Weierstrass $\sigma$ -函数。假设与标准基域$\Omega$相关联的点$\tau$的虚部不超过1.9。假设$\Omega$具有代数不变量$g_2,g_3$,我们证明了$c d^m (\log H)^n$形式的界适用于$\sigma$图上高度最多为$H$和度数最多为$d$的代数点的数目。为了证明这一点,我们应用了马瑟和贝松的结果。也许令人惊讶的是,我们能够为整个图建立这样一个界,而不是一些限制。我们证明了一个类似的结果,而不是$g_2,g_3$,格点是代数的。因此,我们自然地排除了那些$(z,\sigma(z))$对于$z\in\Omega$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On algebraic values of Weierstrass $\sigma$-functions
Suppose that $\Omega$ is a lattice in the complex plane and let $\sigma$ be the corresponding Weierstrass $\sigma$-function. Assume that the point $\tau$ associated to $\Omega$ in the standard fundamental domain has imaginary part at most 1.9. Assuming that $\Omega$ has algebraic invariants $g_2,g_3$ we show that a bound of the form $c d^m (\log H)^n$ holds for the number of algebraic points of height at most $H$ and degree at most $d$ lying on the graph of $\sigma$. To prove this we apply results by Masser and Besson. What is perhaps surprising is that we are able to establish such a bound for the whole graph, rather than some restriction. We prove a similar result when, instead of $g_2,g_3$, the lattice points are algebraic. For this we naturally exclude those $(z,\sigma(z))$ for which $z\in\Omega$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rendiconti Lincei-Matematica e Applicazioni
Rendiconti Lincei-Matematica e Applicazioni MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信