srBERT综述:基于BERT的系统综述文章自动分类模型

S. Choe, S. Aum, Ju Han Kim
{"title":"srBERT综述:基于BERT的系统综述文章自动分类模型","authors":"S. Choe, S. Aum, Ju Han Kim","doi":"10.53043/2347-3894.acam90025","DOIUrl":null,"url":null,"abstract":"Systematic reviews (SRs) have been recognized as the most rigorous and reliable approach to enable evidence-based medicine. However, the considerable workload required to create SRs prevents reflecting the latest knowledge. This study automated the classification of included articles by adopting the Bidirectional Encoder Representations from Transformers (BERT) algorithm. By pretraining with abstracts of articles and a generated vocabulary fine-tuned with titles of articles, the proposed srBERTmy overcomes the training data insufficiency while improving performance in both classification and relation-extraction tasks. Despite the limitation of model vulnerabilities based on training dataset quality, the results demonstrated the feasibility of automatic article classification using machine-learning (ML) approaches to support SR tasks Keywords: Systematic review, process automation, deep learning, text mining","PeriodicalId":72312,"journal":{"name":"Asian journal of complementary and alternative medicine : A-CAM","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Short Review on srBERT: Automatic Article Classification Model for Systematic Review Using BERT\",\"authors\":\"S. Choe, S. Aum, Ju Han Kim\",\"doi\":\"10.53043/2347-3894.acam90025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systematic reviews (SRs) have been recognized as the most rigorous and reliable approach to enable evidence-based medicine. However, the considerable workload required to create SRs prevents reflecting the latest knowledge. This study automated the classification of included articles by adopting the Bidirectional Encoder Representations from Transformers (BERT) algorithm. By pretraining with abstracts of articles and a generated vocabulary fine-tuned with titles of articles, the proposed srBERTmy overcomes the training data insufficiency while improving performance in both classification and relation-extraction tasks. Despite the limitation of model vulnerabilities based on training dataset quality, the results demonstrated the feasibility of automatic article classification using machine-learning (ML) approaches to support SR tasks Keywords: Systematic review, process automation, deep learning, text mining\",\"PeriodicalId\":72312,\"journal\":{\"name\":\"Asian journal of complementary and alternative medicine : A-CAM\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian journal of complementary and alternative medicine : A-CAM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53043/2347-3894.acam90025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian journal of complementary and alternative medicine : A-CAM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53043/2347-3894.acam90025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

系统评价(SRs)已被认为是实现循证医学的最严格和最可靠的方法。然而,创建SRs所需的大量工作量阻碍了反映最新的知识。本研究采用双向编码器表示从变压器(BERT)算法自动分类纳入文章。通过使用文章摘要和根据文章标题进行微调的生成词汇表进行预训练,所提出的srBERTmy克服了训练数据不足的问题,同时提高了分类和关系提取任务的性能。尽管基于训练数据集质量的模型漏洞存在局限性,但结果证明了使用机器学习(ML)方法支持SR任务的自动文章分类的可行性。关键词:系统审查,过程自动化,深度学习,文本挖掘
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short Review on srBERT: Automatic Article Classification Model for Systematic Review Using BERT
Systematic reviews (SRs) have been recognized as the most rigorous and reliable approach to enable evidence-based medicine. However, the considerable workload required to create SRs prevents reflecting the latest knowledge. This study automated the classification of included articles by adopting the Bidirectional Encoder Representations from Transformers (BERT) algorithm. By pretraining with abstracts of articles and a generated vocabulary fine-tuned with titles of articles, the proposed srBERTmy overcomes the training data insufficiency while improving performance in both classification and relation-extraction tasks. Despite the limitation of model vulnerabilities based on training dataset quality, the results demonstrated the feasibility of automatic article classification using machine-learning (ML) approaches to support SR tasks Keywords: Systematic review, process automation, deep learning, text mining
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信