由驱动的模型的统计推断𝑛-阶分数布朗运动

IF 0.4 Q4 STATISTICS & PROBABILITY
Hicham Chaouch, H. Maroufy, Mohamed Omari
{"title":"由驱动的模型的统计推断𝑛-阶分数布朗运动","authors":"Hicham Chaouch, H. Maroufy, Mohamed Omari","doi":"10.1090/tpms/1185","DOIUrl":null,"url":null,"abstract":"<p>We consider the following stochastic integral equation <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X left-parenthesis t right-parenthesis equals mu t plus sigma integral Subscript 0 Superscript t Baseline phi left-parenthesis s right-parenthesis d upper B Subscript upper H Superscript n Baseline left-parenthesis s right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mi>t</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:msubsup>\n <mml:mo>∫<!-- ∫ --></mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mi>t</mml:mi>\n </mml:msubsup>\n <mml:mi>φ<!-- φ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>d</mml:mi>\n <mml:msubsup>\n <mml:mi>B</mml:mi>\n <mml:mi>H</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X(t)=\\mu t + \\sigma \\int _0^t \\varphi (s) dB_H^n(s)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t greater-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t\\geq 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\">\n <mml:semantics>\n <mml:mi>φ<!-- φ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\varphi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a known function and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B Subscript upper H Superscript n\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi>B</mml:mi>\n <mml:mi>H</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">B^n_H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-th order fractional Brownian motion. We provide explicit maximum likelihood estimators for both <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\">\n <mml:semantics>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\sigma ^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then we formulate explicitly a least squares estimator for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\">\n <mml:semantics>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and an estimator for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\sigma ^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> by using power variations method. The consistency and asymptotic normality are established for those estimators when the number of observations or the time horizon is sufficiently large.</p>","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical inference for models driven by 𝑛-th order fractional Brownian motion\",\"authors\":\"Hicham Chaouch, H. Maroufy, Mohamed Omari\",\"doi\":\"10.1090/tpms/1185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the following stochastic integral equation <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X left-parenthesis t right-parenthesis equals mu t plus sigma integral Subscript 0 Superscript t Baseline phi left-parenthesis s right-parenthesis d upper B Subscript upper H Superscript n Baseline left-parenthesis s right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mi>t</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:msubsup>\\n <mml:mo>∫<!-- ∫ --></mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mi>t</mml:mi>\\n </mml:msubsup>\\n <mml:mi>φ<!-- φ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>s</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mi>d</mml:mi>\\n <mml:msubsup>\\n <mml:mi>B</mml:mi>\\n <mml:mi>H</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>s</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X(t)=\\\\mu t + \\\\sigma \\\\int _0^t \\\\varphi (s) dB_H^n(s)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t greater-than-or-equal-to 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>t</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">t\\\\geq 0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"phi\\\">\\n <mml:semantics>\\n <mml:mi>φ<!-- φ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\varphi</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a known function and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B Subscript upper H Superscript n\\\">\\n <mml:semantics>\\n <mml:msubsup>\\n <mml:mi>B</mml:mi>\\n <mml:mi>H</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msubsup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">B^n_H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\">\\n <mml:semantics>\\n <mml:mi>n</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-th order fractional Brownian motion. We provide explicit maximum likelihood estimators for both <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu\\\">\\n <mml:semantics>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma ^2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, then we formulate explicitly a least squares estimator for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu\\\">\\n <mml:semantics>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and an estimator for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma squared\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma ^2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> by using power variations method. The consistency and asymptotic normality are established for those estimators when the number of observations or the time horizon is sufficiently large.</p>\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑以下随机积分方程X(t)=μ,其中φ\varphi是一个已知函数,并且BhnB^n_H是n阶分数布朗运动。我们给出了μμ和σ2\sigma^2的显式最大似然估计量,然后我们用幂变分法显式地公式化了μμμ的最小二乘估计量和σ2\sigma^2的估计量。当观测次数或时间范围足够大时,建立了这些估计量的一致性和渐近正态性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical inference for models driven by 𝑛-th order fractional Brownian motion

We consider the following stochastic integral equation X ( t ) = μ t + σ 0 t φ ( s ) d B H n ( s ) X(t)=\mu t + \sigma \int _0^t \varphi (s) dB_H^n(s) , t 0 t\geq 0 , where φ \varphi is a known function and B H n B^n_H is the n n -th order fractional Brownian motion. We provide explicit maximum likelihood estimators for both μ \mu and σ 2 \sigma ^2 , then we formulate explicitly a least squares estimator for μ \mu and an estimator for σ 2 \sigma ^2 by using power variations method. The consistency and asymptotic normality are established for those estimators when the number of observations or the time horizon is sufficiently large.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信