Peng Liu, Xiaoyu Wu, H. Shao, Yan Zhang, Shuhan Cao
{"title":"约束单调非线性方程的三种自适应混合无导数投影方法及其应用","authors":"Peng Liu, Xiaoyu Wu, H. Shao, Yan Zhang, Shuhan Cao","doi":"10.1002/nla.2471","DOIUrl":null,"url":null,"abstract":"In this work, by considering the hyperplane projection and hybrid techniques, three scaled three‐term conjugate gradient methods are extended to solve the system of constrained monotone nonlinear equations, and the developed methods have the advantages of low storage and only using function values. The new methods satisfy the sufficient descent condition independent of any line search criterion. It has been proved that three new methods converge globally under some mild conditions. The numerical experiments for constrained monotone nonlinear equations and image de‐blurring problems illustrate that the proposed methods are numerically effective and efficient.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Three adaptive hybrid derivative‐free projection methods for constrained monotone nonlinear equations and their applications\",\"authors\":\"Peng Liu, Xiaoyu Wu, H. Shao, Yan Zhang, Shuhan Cao\",\"doi\":\"10.1002/nla.2471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, by considering the hyperplane projection and hybrid techniques, three scaled three‐term conjugate gradient methods are extended to solve the system of constrained monotone nonlinear equations, and the developed methods have the advantages of low storage and only using function values. The new methods satisfy the sufficient descent condition independent of any line search criterion. It has been proved that three new methods converge globally under some mild conditions. The numerical experiments for constrained monotone nonlinear equations and image de‐blurring problems illustrate that the proposed methods are numerically effective and efficient.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2471\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2471","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Three adaptive hybrid derivative‐free projection methods for constrained monotone nonlinear equations and their applications
In this work, by considering the hyperplane projection and hybrid techniques, three scaled three‐term conjugate gradient methods are extended to solve the system of constrained monotone nonlinear equations, and the developed methods have the advantages of low storage and only using function values. The new methods satisfy the sufficient descent condition independent of any line search criterion. It has been proved that three new methods converge globally under some mild conditions. The numerical experiments for constrained monotone nonlinear equations and image de‐blurring problems illustrate that the proposed methods are numerically effective and efficient.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.