滚动接触疲劳特性的三维重构

IF 1.8 4区 物理与天体物理 Q3 OPTICS
Chengkai Zeng, Gaopeng Xu, Hai Li, Gang Zhu, Yan Yang
{"title":"滚动接触疲劳特性的三维重构","authors":"Chengkai Zeng, Gaopeng Xu, Hai Li, Gang Zhu, Yan Yang","doi":"10.1155/2022/3790494","DOIUrl":null,"url":null,"abstract":"Focusing on the 3D topographic characteristics of rolling contact fatigue, a reconstruction method of the fatigue surface of roller based on point cloud data was proposed in this research. A 3D laser scanner was used to capture the data of point cloud on the surface of the fatigue roller. The gradient segmentation method was used to achieve segmentation of the fatigue contact surface, and the Kd-Tree algorithm in Statistical Outlier Removal filter was adopted to remove different types of noise. The greedy triangulation and hole repair and reconstruction of the curled point cloud were conducted. The experimental results showed that the segmentation accuracy of the fatigue contact surface was above 97.7%, the curling error rate of point cloud was 0.09%, and the maximum deviation of the reconstructed fatigue roller surface was 0.0199 mm. These methods can be applied to analyze the working conditions of roller specimen and contact fatigue.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Reconstruction of Rolling Contact Fatigue Characteristics\",\"authors\":\"Chengkai Zeng, Gaopeng Xu, Hai Li, Gang Zhu, Yan Yang\",\"doi\":\"10.1155/2022/3790494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Focusing on the 3D topographic characteristics of rolling contact fatigue, a reconstruction method of the fatigue surface of roller based on point cloud data was proposed in this research. A 3D laser scanner was used to capture the data of point cloud on the surface of the fatigue roller. The gradient segmentation method was used to achieve segmentation of the fatigue contact surface, and the Kd-Tree algorithm in Statistical Outlier Removal filter was adopted to remove different types of noise. The greedy triangulation and hole repair and reconstruction of the curled point cloud were conducted. The experimental results showed that the segmentation accuracy of the fatigue contact surface was above 97.7%, the curling error rate of point cloud was 0.09%, and the maximum deviation of the reconstructed fatigue roller surface was 0.0199 mm. These methods can be applied to analyze the working conditions of roller specimen and contact fatigue.\",\"PeriodicalId\":55995,\"journal\":{\"name\":\"International Journal of Optics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/3790494\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/3790494","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

针对滚动接触疲劳的三维形貌特征,提出了一种基于点云数据的轧辊疲劳表面重建方法。采用三维激光扫描仪对疲劳辊表面的点云数据进行采集。采用梯度分割方法实现疲劳接触面的分割,采用统计异常值去除滤波器中的Kd-Tree算法去除不同类型的噪声。对卷曲点云进行贪婪三角测量和孔洞修复重建。实验结果表明,疲劳接触面的分割精度在97.7%以上,点云的卷曲误差率为0.09%,重构的疲劳滚子表面最大偏差为0.0199 这些方法可用于分析轧辊试件的工作状态和接触疲劳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-Dimensional Reconstruction of Rolling Contact Fatigue Characteristics
Focusing on the 3D topographic characteristics of rolling contact fatigue, a reconstruction method of the fatigue surface of roller based on point cloud data was proposed in this research. A 3D laser scanner was used to capture the data of point cloud on the surface of the fatigue roller. The gradient segmentation method was used to achieve segmentation of the fatigue contact surface, and the Kd-Tree algorithm in Statistical Outlier Removal filter was adopted to remove different types of noise. The greedy triangulation and hole repair and reconstruction of the curled point cloud were conducted. The experimental results showed that the segmentation accuracy of the fatigue contact surface was above 97.7%, the curling error rate of point cloud was 0.09%, and the maximum deviation of the reconstructed fatigue roller surface was 0.0199 mm. These methods can be applied to analyze the working conditions of roller specimen and contact fatigue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Optics
International Journal of Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
3.40
自引率
5.90%
发文量
28
审稿时长
13 weeks
期刊介绍: International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信