用实验和数值模拟方法确定三角形断面堰流的水力特性。

Q4 Chemical Engineering
A. Yıldız, A. İ. Marti, M. Gogus
{"title":"用实验和数值模拟方法确定三角形断面堰流的水力特性。","authors":"A. Yıldız, A. İ. Marti, M. Gogus","doi":"10.22059/JCAMECH.2021.318239.594","DOIUrl":null,"url":null,"abstract":"The spillways of hydraulic structures transfer excessive water from dam reservoir to the downstream in a safe and controlled manner. A labyrinth or triangular weir is a flat spillway folded in plain view. The labyrinth weirs provide an increase in crest length for a given channel width and increase the flow capacity for a given weir load. As a result of the increased flow capacity, the labyrinth and triangular weirs require less space in the dam body than the flat weirs. In this study, experiments were carried out on the labyrinth weirs containing triangles of different heights and numbers by using 3 different weir heights (P=20cm, 30cm, and 40 cm) and 4 different weir shapes. Each experiment was repeated for 30 different discharge values. The effects of weir height and weir shape on the total head over the weir (HT) and discharge (Q) were investigated. In addition, the numerical models of all experimental setups were created by ANSYS-Fluent program using Computational Fluid Dynamics (CFD). By comparing the results obtained from the numerical models with the physical models, the accuracy of the numerical models was tested. According to the results, as the number of the triangles (N) of the weir increases, the discharge coefficient (Cd) decreases. The weir height (P) does not have a major effect on the discharge.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"52 1","pages":"215-232"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Determination of hydraulic characteristics of flow over a triangular sectioned weir by using experimental and numerical modeling.\",\"authors\":\"A. Yıldız, A. İ. Marti, M. Gogus\",\"doi\":\"10.22059/JCAMECH.2021.318239.594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spillways of hydraulic structures transfer excessive water from dam reservoir to the downstream in a safe and controlled manner. A labyrinth or triangular weir is a flat spillway folded in plain view. The labyrinth weirs provide an increase in crest length for a given channel width and increase the flow capacity for a given weir load. As a result of the increased flow capacity, the labyrinth and triangular weirs require less space in the dam body than the flat weirs. In this study, experiments were carried out on the labyrinth weirs containing triangles of different heights and numbers by using 3 different weir heights (P=20cm, 30cm, and 40 cm) and 4 different weir shapes. Each experiment was repeated for 30 different discharge values. The effects of weir height and weir shape on the total head over the weir (HT) and discharge (Q) were investigated. In addition, the numerical models of all experimental setups were created by ANSYS-Fluent program using Computational Fluid Dynamics (CFD). By comparing the results obtained from the numerical models with the physical models, the accuracy of the numerical models was tested. According to the results, as the number of the triangles (N) of the weir increases, the discharge coefficient (Cd) decreases. The weir height (P) does not have a major effect on the discharge.\",\"PeriodicalId\":37801,\"journal\":{\"name\":\"Applied and Computational Mechanics\",\"volume\":\"52 1\",\"pages\":\"215-232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/JCAMECH.2021.318239.594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCAMECH.2021.318239.594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 2

摘要

水工建筑物溢洪道以一种安全、可控的方式,将大坝水库多余的水转移到下游。迷宫或三角形堰是一种平坦的溢洪道,在平原上折叠起来。迷宫堰在给定的河道宽度下增加了波峰长度,并在给定的堰载下增加了流量。由于流量的增加,迷宫堰和三角形堰在坝体中占用的空间比扁平堰要小。本研究采用3种不同的堰高(P=20cm、30cm和40cm)和4种不同的堰形,对含有不同高度和数量三角形的迷宫堰进行实验。每个实验重复30个不同的放电值。研究了堰高和堰型对总堰头(HT)和流量(Q)的影响。此外,利用ANSYS-Fluent软件建立了各实验装置的数值模型。通过数值模型与物理模型的比较,验证了数值模型的准确性。结果表明,随着堰三角形数目(N)的增加,流量系数(Cd)减小。堰高(P)对流量影响不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of hydraulic characteristics of flow over a triangular sectioned weir by using experimental and numerical modeling.
The spillways of hydraulic structures transfer excessive water from dam reservoir to the downstream in a safe and controlled manner. A labyrinth or triangular weir is a flat spillway folded in plain view. The labyrinth weirs provide an increase in crest length for a given channel width and increase the flow capacity for a given weir load. As a result of the increased flow capacity, the labyrinth and triangular weirs require less space in the dam body than the flat weirs. In this study, experiments were carried out on the labyrinth weirs containing triangles of different heights and numbers by using 3 different weir heights (P=20cm, 30cm, and 40 cm) and 4 different weir shapes. Each experiment was repeated for 30 different discharge values. The effects of weir height and weir shape on the total head over the weir (HT) and discharge (Q) were investigated. In addition, the numerical models of all experimental setups were created by ANSYS-Fluent program using Computational Fluid Dynamics (CFD). By comparing the results obtained from the numerical models with the physical models, the accuracy of the numerical models was tested. According to the results, as the number of the triangles (N) of the weir increases, the discharge coefficient (Cd) decreases. The weir height (P) does not have a major effect on the discharge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信