{"title":"多模态医学图像融合技术综述","authors":"T. Tirupal, B. Mohan, S. Kumar","doi":"10.2174/1574362415666200226103116","DOIUrl":null,"url":null,"abstract":"\n\nThe main objective of image fusion for multimodal medical images is to retrieve valuable information by combining multiple images obtained from various sources into a single image suitable for better diagnosis. In this paper, a detailed survey on various existing medical image fusion algorithms, with a comparative discussion is presented. Image fusion algorithms available in the current literature are categorized into various methods known as (1) morphological methods, (2) human value system operator based methods, (3) sub-band decomposition methods, (4) neural network based methods, and (5) fuzzy logic based methods. This research concludes that even though there exists a few open-ended creative and logical difficulties, the fusion of medical images in many combinations assists in utilizing medical image fusion for medicinal diagnostics and examination. There is tremendous progress in the fields of deep learning, artificial intelligence and bio-inspired optimization techniques. Effective utilization of these techniques can be used to further improve the efficiency of image fusion algorithms.\n","PeriodicalId":10868,"journal":{"name":"Current Signal Transduction Therapy","volume":"15 1","pages":"1-22"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Multimodal Medical Image Fusion Techniques – A Review\",\"authors\":\"T. Tirupal, B. Mohan, S. Kumar\",\"doi\":\"10.2174/1574362415666200226103116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThe main objective of image fusion for multimodal medical images is to retrieve valuable information by combining multiple images obtained from various sources into a single image suitable for better diagnosis. In this paper, a detailed survey on various existing medical image fusion algorithms, with a comparative discussion is presented. Image fusion algorithms available in the current literature are categorized into various methods known as (1) morphological methods, (2) human value system operator based methods, (3) sub-band decomposition methods, (4) neural network based methods, and (5) fuzzy logic based methods. This research concludes that even though there exists a few open-ended creative and logical difficulties, the fusion of medical images in many combinations assists in utilizing medical image fusion for medicinal diagnostics and examination. There is tremendous progress in the fields of deep learning, artificial intelligence and bio-inspired optimization techniques. Effective utilization of these techniques can be used to further improve the efficiency of image fusion algorithms.\\n\",\"PeriodicalId\":10868,\"journal\":{\"name\":\"Current Signal Transduction Therapy\",\"volume\":\"15 1\",\"pages\":\"1-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Signal Transduction Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1574362415666200226103116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Signal Transduction Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1574362415666200226103116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Multimodal Medical Image Fusion Techniques – A Review
The main objective of image fusion for multimodal medical images is to retrieve valuable information by combining multiple images obtained from various sources into a single image suitable for better diagnosis. In this paper, a detailed survey on various existing medical image fusion algorithms, with a comparative discussion is presented. Image fusion algorithms available in the current literature are categorized into various methods known as (1) morphological methods, (2) human value system operator based methods, (3) sub-band decomposition methods, (4) neural network based methods, and (5) fuzzy logic based methods. This research concludes that even though there exists a few open-ended creative and logical difficulties, the fusion of medical images in many combinations assists in utilizing medical image fusion for medicinal diagnostics and examination. There is tremendous progress in the fields of deep learning, artificial intelligence and bio-inspired optimization techniques. Effective utilization of these techniques can be used to further improve the efficiency of image fusion algorithms.
期刊介绍:
In recent years a breakthrough has occurred in our understanding of the molecular pathomechanisms of human diseases whereby most of our diseases are related to intra and intercellular communication disorders. The concept of signal transduction therapy has got into the front line of modern drug research, and a multidisciplinary approach is being used to identify and treat signaling disorders.
The journal publishes timely in-depth reviews, research article and drug clinical trial studies in the field of signal transduction therapy. Thematic issues are also published to cover selected areas of signal transduction therapy. Coverage of the field includes genomics, proteomics, medicinal chemistry and the relevant diseases involved in signaling e.g. cancer, neurodegenerative and inflammatory diseases. Current Signal Transduction Therapy is an essential journal for all involved in drug design and discovery.