双金属Pd-Pt/HY催化剂的甲苯加氢和开环反应

IF 0.3 Q4 ENGINEERING, MULTIDISCIPLINARY
T. Romero, L. Melo, María Esparragoza, Rosarmy Ávila, A. Moronta, G. Carruyo, L. García, C. Donoso, Laura Sáenz, Carlos Yugcha-Pilamunga
{"title":"双金属Pd-Pt/HY催化剂的甲苯加氢和开环反应","authors":"T. Romero, L. Melo, María Esparragoza, Rosarmy Ávila, A. Moronta, G. Carruyo, L. García, C. Donoso, Laura Sáenz, Carlos Yugcha-Pilamunga","doi":"10.18273/revuin.v22n1-2023003","DOIUrl":null,"url":null,"abstract":"Bimetallic Pd-Pt/HY catalysts prepared by the co-impregnation method with an atomic variation of Pd/Pd+Pt were studied to convert toluene and methylcyclohexane. The catalysts were characterized by the BET method, chemisorption of CO by the pulse method, programmed temperature reduction (H2-TPR), and programmed ammonia thermo-desorption (NH3TPD). Results of chemisorption of CO and H2-TPR for Pd-Pt/HY catalysts suggest the existence of a strong interaction between Pd and Pt. The NH3-TPD showed that incorporating metals influences the percentage of relative distribution of weak/strong acid sites presented in decreasing order of acidity: Pd0Pt100/HY>Pd100Pt0/HY>Pd33Pt67/HY. Atomic composition Pd/Pd+Pt equal to 0.33, and relative distribution of weak/strong acid sites equal to 2, favor hydrogenation of toluene to methylcyclohexane in metal sites and subsequent skeletal isomerization in the acidic sites through dimethylcyclopentane intermediate and ring-opening in the metal sites, leading to increased formation of n-heptane relative to iso-heptane. Bimetallic Pd-Pt/HY catalysts prepared by the co-impregnation method with an atomic variation of Pd/Pd+Pt were studied to convert toluene and methylcyclohexane. The catalysts were characterized by the BET method, chemisorption of CO by the pulse method, programmed temperature reduction (H2-TPR), and programmed ammonia thermo-desorption (NH3TPD). Results of chemisorption of CO and H2-TPR for Pd-Pt/HY catalysts suggest the existence of a strong interaction between Pd and Pt. The NH3-TPD showed that incorporating metals influences the percentage of relative distribution of weak/strong acid sites presented in decreasing order of acidity: Pd0Pt100/HY>Pd100Pt0/HY>Pd33Pt67/HY. Atomic composition Pd/Pd+Pt equal to 0.33, and relative distribution of weak/strong acid sites equal to 2, favor hydrogenation of toluene to methylcyclohexane in metal sites and subsequent skeletal isomerization in the acidic sites through dimethylcyclopentane intermediate and ring-opening in the metal sites, leading to increased formation of n-heptane relative to iso-heptane.","PeriodicalId":42183,"journal":{"name":"UIS Ingenierias","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toluene hydrogenation and ring-opening on bimetallic Pd-Pt/HY catalysts\",\"authors\":\"T. Romero, L. Melo, María Esparragoza, Rosarmy Ávila, A. Moronta, G. Carruyo, L. García, C. Donoso, Laura Sáenz, Carlos Yugcha-Pilamunga\",\"doi\":\"10.18273/revuin.v22n1-2023003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bimetallic Pd-Pt/HY catalysts prepared by the co-impregnation method with an atomic variation of Pd/Pd+Pt were studied to convert toluene and methylcyclohexane. The catalysts were characterized by the BET method, chemisorption of CO by the pulse method, programmed temperature reduction (H2-TPR), and programmed ammonia thermo-desorption (NH3TPD). Results of chemisorption of CO and H2-TPR for Pd-Pt/HY catalysts suggest the existence of a strong interaction between Pd and Pt. The NH3-TPD showed that incorporating metals influences the percentage of relative distribution of weak/strong acid sites presented in decreasing order of acidity: Pd0Pt100/HY>Pd100Pt0/HY>Pd33Pt67/HY. Atomic composition Pd/Pd+Pt equal to 0.33, and relative distribution of weak/strong acid sites equal to 2, favor hydrogenation of toluene to methylcyclohexane in metal sites and subsequent skeletal isomerization in the acidic sites through dimethylcyclopentane intermediate and ring-opening in the metal sites, leading to increased formation of n-heptane relative to iso-heptane. Bimetallic Pd-Pt/HY catalysts prepared by the co-impregnation method with an atomic variation of Pd/Pd+Pt were studied to convert toluene and methylcyclohexane. The catalysts were characterized by the BET method, chemisorption of CO by the pulse method, programmed temperature reduction (H2-TPR), and programmed ammonia thermo-desorption (NH3TPD). Results of chemisorption of CO and H2-TPR for Pd-Pt/HY catalysts suggest the existence of a strong interaction between Pd and Pt. The NH3-TPD showed that incorporating metals influences the percentage of relative distribution of weak/strong acid sites presented in decreasing order of acidity: Pd0Pt100/HY>Pd100Pt0/HY>Pd33Pt67/HY. Atomic composition Pd/Pd+Pt equal to 0.33, and relative distribution of weak/strong acid sites equal to 2, favor hydrogenation of toluene to methylcyclohexane in metal sites and subsequent skeletal isomerization in the acidic sites through dimethylcyclopentane intermediate and ring-opening in the metal sites, leading to increased formation of n-heptane relative to iso-heptane.\",\"PeriodicalId\":42183,\"journal\":{\"name\":\"UIS Ingenierias\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UIS Ingenierias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revuin.v22n1-2023003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UIS Ingenierias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revuin.v22n1-2023003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了用共浸渍法制备的Pd-Pt/HY双金属催化剂,其原子变化为Pd/Pd+Pt,以转化甲苯和甲基环己烷。通过BET法、脉冲法化学吸附CO、程序升温还原(H2-TPR)和程序氨热解吸(NH3TPD)对催化剂进行了表征。Pd-Pt/HY催化剂对CO和H2-TPR的化学吸附结果表明,Pd和Pt之间存在强烈的相互作用。NH3-TPD表明,金属的加入影响弱酸/强酸位点的相对分布百分比,其呈现出按酸度递减的顺序:Pd0Pt100/HY>Pd100Pt0/HY>Pd33Pt67/HY。原子组成Pd/Pd+Pt等于0.33,弱酸/强酸位点的相对分布等于2,有利于甲苯在金属位点氢化为甲基环己烷,随后通过二甲基环戊烷中间体在酸性位点进行骨架异构化,并在金属位点开环,导致正庚烷相对于异庚烷的形成增加。研究了用共浸渍法制备的Pd-Pt/HY双金属催化剂,其原子变化为Pd/Pd+Pt,以转化甲苯和甲基环己烷。通过BET法、脉冲法化学吸附CO、程序升温还原(H2-TPR)和程序氨热解吸(NH3TPD)对催化剂进行了表征。Pd-Pt/HY催化剂对CO和H2-TPR的化学吸附结果表明,Pd和Pt之间存在强烈的相互作用。NH3-TPD表明,加入金属会影响弱酸/强酸位点的相对分布百分比,其分布顺序为:Pd0Pt100/HY>Pd100Pt0/HY>Pd33Pt67/HY。原子组成Pd/Pd+Pt等于0.33,弱酸/强酸位点的相对分布等于2,有利于甲苯在金属位点氢化为甲基环己烷,随后通过二甲基环戊烷中间体在酸性位点进行骨架异构化,并在金属位点开环,导致正庚烷相对于异庚烷的形成增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toluene hydrogenation and ring-opening on bimetallic Pd-Pt/HY catalysts
Bimetallic Pd-Pt/HY catalysts prepared by the co-impregnation method with an atomic variation of Pd/Pd+Pt were studied to convert toluene and methylcyclohexane. The catalysts were characterized by the BET method, chemisorption of CO by the pulse method, programmed temperature reduction (H2-TPR), and programmed ammonia thermo-desorption (NH3TPD). Results of chemisorption of CO and H2-TPR for Pd-Pt/HY catalysts suggest the existence of a strong interaction between Pd and Pt. The NH3-TPD showed that incorporating metals influences the percentage of relative distribution of weak/strong acid sites presented in decreasing order of acidity: Pd0Pt100/HY>Pd100Pt0/HY>Pd33Pt67/HY. Atomic composition Pd/Pd+Pt equal to 0.33, and relative distribution of weak/strong acid sites equal to 2, favor hydrogenation of toluene to methylcyclohexane in metal sites and subsequent skeletal isomerization in the acidic sites through dimethylcyclopentane intermediate and ring-opening in the metal sites, leading to increased formation of n-heptane relative to iso-heptane. Bimetallic Pd-Pt/HY catalysts prepared by the co-impregnation method with an atomic variation of Pd/Pd+Pt were studied to convert toluene and methylcyclohexane. The catalysts were characterized by the BET method, chemisorption of CO by the pulse method, programmed temperature reduction (H2-TPR), and programmed ammonia thermo-desorption (NH3TPD). Results of chemisorption of CO and H2-TPR for Pd-Pt/HY catalysts suggest the existence of a strong interaction between Pd and Pt. The NH3-TPD showed that incorporating metals influences the percentage of relative distribution of weak/strong acid sites presented in decreasing order of acidity: Pd0Pt100/HY>Pd100Pt0/HY>Pd33Pt67/HY. Atomic composition Pd/Pd+Pt equal to 0.33, and relative distribution of weak/strong acid sites equal to 2, favor hydrogenation of toluene to methylcyclohexane in metal sites and subsequent skeletal isomerization in the acidic sites through dimethylcyclopentane intermediate and ring-opening in the metal sites, leading to increased formation of n-heptane relative to iso-heptane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
UIS Ingenierias
UIS Ingenierias ENGINEERING, MULTIDISCIPLINARY-
自引率
33.30%
发文量
27
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信