具有$\varepsilon$范围的较低$N$加权Ricci曲率边界下具有边界的流形的几何比较

IF 0.7 4区 数学 Q2 MATHEMATICS
K. Kuwae, Y. Sakurai
{"title":"具有$\\varepsilon$范围的较低$N$加权Ricci曲率边界下具有边界的流形的几何比较","authors":"K. Kuwae, Y. Sakurai","doi":"10.2969/jmsj/87278727","DOIUrl":null,"url":null,"abstract":"We study comparison geometry of manifolds with boundary under a lower $N$-weighted Ricci curvature bound for $N\\in ]-\\infty,1]\\cup [n,+\\infty]$ with $\\varepsilon$-range introduced by Lu-Minguzzi-Ohta. We will conclude splitting theorems, and also comparison geometric results for inscribed radius, volume around the boundary, and smallest Dirichlet eigenvalue of the weighted $p$-Laplacian. Our results interpolate those for $N\\in [n,+\\infty[$ and $\\varepsilon=1$, and for $N\\in ]-\\infty,1]$ and $\\varepsilon=0$ by the second named author.","PeriodicalId":49988,"journal":{"name":"Journal of the Mathematical Society of Japan","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison geometry of manifolds with boundary under lower $N$-weighted Ricci curvature bounds with $\\\\varepsilon$-range\",\"authors\":\"K. Kuwae, Y. Sakurai\",\"doi\":\"10.2969/jmsj/87278727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study comparison geometry of manifolds with boundary under a lower $N$-weighted Ricci curvature bound for $N\\\\in ]-\\\\infty,1]\\\\cup [n,+\\\\infty]$ with $\\\\varepsilon$-range introduced by Lu-Minguzzi-Ohta. We will conclude splitting theorems, and also comparison geometric results for inscribed radius, volume around the boundary, and smallest Dirichlet eigenvalue of the weighted $p$-Laplacian. Our results interpolate those for $N\\\\in [n,+\\\\infty[$ and $\\\\varepsilon=1$, and for $N\\\\in ]-\\\\infty,1]$ and $\\\\varepsilon=0$ by the second named author.\",\"PeriodicalId\":49988,\"journal\":{\"name\":\"Journal of the Mathematical Society of Japan\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mathematical Society of Japan\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/87278727\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mathematical Society of Japan","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/87278727","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在lu - mininguzzi - ohta引入的$\varepsilon$ -范围下,研究了$N\in ]-\infty,1]\cup [n,+\infty]$下具有下$N$ -加权Ricci曲率边界的流形的比较几何。我们将总结分裂定理,并比较几何结果的内切半径,体积周围的边界,和最小狄利克雷特征值的加权$p$ -拉普拉斯。我们的结果对$N\in [n,+\infty[$和$\varepsilon=1$进行插值,并对第二个指定的作者的$N\in ]-\infty,1]$和$\varepsilon=0$进行插值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison geometry of manifolds with boundary under lower $N$-weighted Ricci curvature bounds with $\varepsilon$-range
We study comparison geometry of manifolds with boundary under a lower $N$-weighted Ricci curvature bound for $N\in ]-\infty,1]\cup [n,+\infty]$ with $\varepsilon$-range introduced by Lu-Minguzzi-Ohta. We will conclude splitting theorems, and also comparison geometric results for inscribed radius, volume around the boundary, and smallest Dirichlet eigenvalue of the weighted $p$-Laplacian. Our results interpolate those for $N\in [n,+\infty[$ and $\varepsilon=1$, and for $N\in ]-\infty,1]$ and $\varepsilon=0$ by the second named author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: The Journal of the Mathematical Society of Japan (JMSJ) was founded in 1948 and is published quarterly by the Mathematical Society of Japan (MSJ). It covers a wide range of pure mathematics. To maintain high standards, research articles in the journal are selected by the editorial board with the aid of distinguished international referees. Electronic access to the articles is offered through Project Euclid and J-STAGE. We provide free access to back issues three years after publication (available also at Online Index).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信