具有$\varepsilon$范围的较低$N$加权Ricci曲率边界下具有边界的流形的几何比较

Pub Date : 2020-11-07 DOI:10.2969/jmsj/87278727
K. Kuwae, Y. Sakurai
{"title":"具有$\\varepsilon$范围的较低$N$加权Ricci曲率边界下具有边界的流形的几何比较","authors":"K. Kuwae, Y. Sakurai","doi":"10.2969/jmsj/87278727","DOIUrl":null,"url":null,"abstract":"We study comparison geometry of manifolds with boundary under a lower $N$-weighted Ricci curvature bound for $N\\in ]-\\infty,1]\\cup [n,+\\infty]$ with $\\varepsilon$-range introduced by Lu-Minguzzi-Ohta. We will conclude splitting theorems, and also comparison geometric results for inscribed radius, volume around the boundary, and smallest Dirichlet eigenvalue of the weighted $p$-Laplacian. Our results interpolate those for $N\\in [n,+\\infty[$ and $\\varepsilon=1$, and for $N\\in ]-\\infty,1]$ and $\\varepsilon=0$ by the second named author.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison geometry of manifolds with boundary under lower $N$-weighted Ricci curvature bounds with $\\\\varepsilon$-range\",\"authors\":\"K. Kuwae, Y. Sakurai\",\"doi\":\"10.2969/jmsj/87278727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study comparison geometry of manifolds with boundary under a lower $N$-weighted Ricci curvature bound for $N\\\\in ]-\\\\infty,1]\\\\cup [n,+\\\\infty]$ with $\\\\varepsilon$-range introduced by Lu-Minguzzi-Ohta. We will conclude splitting theorems, and also comparison geometric results for inscribed radius, volume around the boundary, and smallest Dirichlet eigenvalue of the weighted $p$-Laplacian. Our results interpolate those for $N\\\\in [n,+\\\\infty[$ and $\\\\varepsilon=1$, and for $N\\\\in ]-\\\\infty,1]$ and $\\\\varepsilon=0$ by the second named author.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/87278727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/87278727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在lu - mininguzzi - ohta引入的$\varepsilon$ -范围下,研究了$N\in ]-\infty,1]\cup [n,+\infty]$下具有下$N$ -加权Ricci曲率边界的流形的比较几何。我们将总结分裂定理,并比较几何结果的内切半径,体积周围的边界,和最小狄利克雷特征值的加权$p$ -拉普拉斯。我们的结果对$N\in [n,+\infty[$和$\varepsilon=1$进行插值,并对第二个指定的作者的$N\in ]-\infty,1]$和$\varepsilon=0$进行插值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Comparison geometry of manifolds with boundary under lower $N$-weighted Ricci curvature bounds with $\varepsilon$-range
We study comparison geometry of manifolds with boundary under a lower $N$-weighted Ricci curvature bound for $N\in ]-\infty,1]\cup [n,+\infty]$ with $\varepsilon$-range introduced by Lu-Minguzzi-Ohta. We will conclude splitting theorems, and also comparison geometric results for inscribed radius, volume around the boundary, and smallest Dirichlet eigenvalue of the weighted $p$-Laplacian. Our results interpolate those for $N\in [n,+\infty[$ and $\varepsilon=1$, and for $N\in ]-\infty,1]$ and $\varepsilon=0$ by the second named author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信