{"title":"第四届高升力预测研讨会RANS/LES混合技术焦点小组总结","authors":"N. Ashton, P. Batten, A. Cary, K. Holst","doi":"10.2514/1.c037329","DOIUrl":null,"url":null,"abstract":"This paper summarizes the collective efforts of multiple teams that contributed to the hybrid RANS/LES technical focus group for the 4th AIAA CFD High Lift Prediction Workshop (HLPW-4), which took place on January 7, 2022, in San Diego, California. The overall conclusion is that turbulence-resolving methods such as hybrid RANS/LES (HRLES) do offer improved predictions for these high-lift geometries, with respect to the underlying RANS models, but there are nuances, and some unresolved issues remain that should be the focus of future work. In particular, while HRLES methods appear to show clearly improved predictions at higher angles of attack, there is some tendency for HRLES methods to return slightly worse moment predictions at lower angles of attack, suggesting that prediction of the shallow separation from the flaps might need further research. Computing cost also remains a significant issue, with HRLES methods requiring roughly nine times more high-performance computing central processing unit core hours than steady-state RANS methods, indicating that future algorithmic and computational optimization could be beneficial. Finally, there are strong indications that modeling the wind tunnel has a positive impact on correlation with experimental measurements, suggesting that future work might be better focused on in-tunnel simulations.","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Summary of the 4th High-Lift Prediction Workshop Hybrid RANS/LES Technology Focus Group\",\"authors\":\"N. Ashton, P. Batten, A. Cary, K. Holst\",\"doi\":\"10.2514/1.c037329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper summarizes the collective efforts of multiple teams that contributed to the hybrid RANS/LES technical focus group for the 4th AIAA CFD High Lift Prediction Workshop (HLPW-4), which took place on January 7, 2022, in San Diego, California. The overall conclusion is that turbulence-resolving methods such as hybrid RANS/LES (HRLES) do offer improved predictions for these high-lift geometries, with respect to the underlying RANS models, but there are nuances, and some unresolved issues remain that should be the focus of future work. In particular, while HRLES methods appear to show clearly improved predictions at higher angles of attack, there is some tendency for HRLES methods to return slightly worse moment predictions at lower angles of attack, suggesting that prediction of the shallow separation from the flaps might need further research. Computing cost also remains a significant issue, with HRLES methods requiring roughly nine times more high-performance computing central processing unit core hours than steady-state RANS methods, indicating that future algorithmic and computational optimization could be beneficial. Finally, there are strong indications that modeling the wind tunnel has a positive impact on correlation with experimental measurements, suggesting that future work might be better focused on in-tunnel simulations.\",\"PeriodicalId\":14927,\"journal\":{\"name\":\"Journal of Aircraft\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aircraft\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.c037329\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.c037329","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Summary of the 4th High-Lift Prediction Workshop Hybrid RANS/LES Technology Focus Group
This paper summarizes the collective efforts of multiple teams that contributed to the hybrid RANS/LES technical focus group for the 4th AIAA CFD High Lift Prediction Workshop (HLPW-4), which took place on January 7, 2022, in San Diego, California. The overall conclusion is that turbulence-resolving methods such as hybrid RANS/LES (HRLES) do offer improved predictions for these high-lift geometries, with respect to the underlying RANS models, but there are nuances, and some unresolved issues remain that should be the focus of future work. In particular, while HRLES methods appear to show clearly improved predictions at higher angles of attack, there is some tendency for HRLES methods to return slightly worse moment predictions at lower angles of attack, suggesting that prediction of the shallow separation from the flaps might need further research. Computing cost also remains a significant issue, with HRLES methods requiring roughly nine times more high-performance computing central processing unit core hours than steady-state RANS methods, indicating that future algorithmic and computational optimization could be beneficial. Finally, there are strong indications that modeling the wind tunnel has a positive impact on correlation with experimental measurements, suggesting that future work might be better focused on in-tunnel simulations.
期刊介绍:
This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.