主部具有时相关系数的双特征双曲算子的Cauchy问题

Pub Date : 2020-12-15 DOI:10.1619/fesi.63.345
S. Wakabayashi
{"title":"主部具有时相关系数的双特征双曲算子的Cauchy问题","authors":"S. Wakabayashi","doi":"10.1619/fesi.63.345","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the Cauchy problem for hyperbolic operators with double characteristics in the framework of the space of C∞ functions. In the case where the coefficients of their principal parts depend only on the time variable and are real analytic, we give a sufficient condition for C∞ well-posedness, which is also a necessary one when the space dimension is less than 3 or the coefficients of the principal parts are semi-algebraic functions ( e.g., polynomials) of the time variable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Cauchy Problem for Hyperbolic Operators with Double Characteristics whose Principal Parts Have Time Dependent Coefficients\",\"authors\":\"S. Wakabayashi\",\"doi\":\"10.1619/fesi.63.345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the Cauchy problem for hyperbolic operators with double characteristics in the framework of the space of C∞ functions. In the case where the coefficients of their principal parts depend only on the time variable and are real analytic, we give a sufficient condition for C∞ well-posedness, which is also a necessary one when the space dimension is less than 3 or the coefficients of the principal parts are semi-algebraic functions ( e.g., polynomials) of the time variable.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/fesi.63.345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.63.345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在C∞函数空间的框架下研究了具有双重特征的双曲算子的Cauchy问题。在其主要部分的系数仅依赖于时间变量并且是实解析的情况下,我们给出了C∞适定性的一个充分条件,当空间维数小于3或者主要部分的参数是时间变量的半代数函数(如多项式)时,这也是一个必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Cauchy Problem for Hyperbolic Operators with Double Characteristics whose Principal Parts Have Time Dependent Coefficients
In this paper we investigate the Cauchy problem for hyperbolic operators with double characteristics in the framework of the space of C∞ functions. In the case where the coefficients of their principal parts depend only on the time variable and are real analytic, we give a sufficient condition for C∞ well-posedness, which is also a necessary one when the space dimension is less than 3 or the coefficients of the principal parts are semi-algebraic functions ( e.g., polynomials) of the time variable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信