Débora Elisabet Vélez, Victoria Evangelina Mestre Cordero, Romina Hermann, María de Las Mercedes Fernández Pazos, Federico Joaquín Reznik, Lucia Sánchez, María Gabriela Marina Prendes
{"title":"红细胞生成素介导的心脏缺血再灌注保护作用","authors":"Débora Elisabet Vélez, Victoria Evangelina Mestre Cordero, Romina Hermann, María de Las Mercedes Fernández Pazos, Federico Joaquín Reznik, Lucia Sánchez, María Gabriela Marina Prendes","doi":"10.1530/JME-23-0076","DOIUrl":null,"url":null,"abstract":"<p><p>Several studies provide evidence that erythropoietin (EPO) could play an important role in the recovery of the heart subjected to ischemia-reperfusion. In this regard, it has been suggested that EPO could be involved in protein kinase B (Akt) activation as a cell survival protein. The aim of the present study was to investigate the effects of EPO on the Akt/glycogen synthase kinase 3 beta (GSK-3β) pathway in the presence or absence of wortmannin (W, Akt inhibitor) and its relationship with mitochondrial morphology and function preservation in ischemic-reperfused rat hearts. EPO improved the functional recovery of the heart subjected to ischemia-reperfusion, reduced the release of CK and the infarct size, and promoted preservation of the mitochondrial structure. Moreover, it reduced tissue lactate content and preserved glycogen in order to prevent ischemia. The results showed greater Akt activation, accompanied by preservation of swelling and mitochondrial calcium retention capacity, as well as an increase in ATP synthesis capacity. These results were accompanied by an inhibition of GSK-3β, suggesting regulation of Akt on the opening of the mitochondrial permeability transition pore. All these beneficial effects exerted by acute treatment with EPO were prevented by W. The present study provided novel evidence that EPO not only enhances intrinsic activation of Akt during myocardial ischemia-reperfusion but also promotes GSK-3β inhibition, contributing to mitochondrial structure and function preservation.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erythropoietin-mediated cardioprotection in hearts subjected to ischemia reperfusion.\",\"authors\":\"Débora Elisabet Vélez, Victoria Evangelina Mestre Cordero, Romina Hermann, María de Las Mercedes Fernández Pazos, Federico Joaquín Reznik, Lucia Sánchez, María Gabriela Marina Prendes\",\"doi\":\"10.1530/JME-23-0076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several studies provide evidence that erythropoietin (EPO) could play an important role in the recovery of the heart subjected to ischemia-reperfusion. In this regard, it has been suggested that EPO could be involved in protein kinase B (Akt) activation as a cell survival protein. The aim of the present study was to investigate the effects of EPO on the Akt/glycogen synthase kinase 3 beta (GSK-3β) pathway in the presence or absence of wortmannin (W, Akt inhibitor) and its relationship with mitochondrial morphology and function preservation in ischemic-reperfused rat hearts. EPO improved the functional recovery of the heart subjected to ischemia-reperfusion, reduced the release of CK and the infarct size, and promoted preservation of the mitochondrial structure. Moreover, it reduced tissue lactate content and preserved glycogen in order to prevent ischemia. The results showed greater Akt activation, accompanied by preservation of swelling and mitochondrial calcium retention capacity, as well as an increase in ATP synthesis capacity. These results were accompanied by an inhibition of GSK-3β, suggesting regulation of Akt on the opening of the mitochondrial permeability transition pore. All these beneficial effects exerted by acute treatment with EPO were prevented by W. The present study provided novel evidence that EPO not only enhances intrinsic activation of Akt during myocardial ischemia-reperfusion but also promotes GSK-3β inhibition, contributing to mitochondrial structure and function preservation.</p>\",\"PeriodicalId\":16570,\"journal\":{\"name\":\"Journal of molecular endocrinology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JME-23-0076\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-23-0076","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Erythropoietin-mediated cardioprotection in hearts subjected to ischemia reperfusion.
Several studies provide evidence that erythropoietin (EPO) could play an important role in the recovery of the heart subjected to ischemia-reperfusion. In this regard, it has been suggested that EPO could be involved in protein kinase B (Akt) activation as a cell survival protein. The aim of the present study was to investigate the effects of EPO on the Akt/glycogen synthase kinase 3 beta (GSK-3β) pathway in the presence or absence of wortmannin (W, Akt inhibitor) and its relationship with mitochondrial morphology and function preservation in ischemic-reperfused rat hearts. EPO improved the functional recovery of the heart subjected to ischemia-reperfusion, reduced the release of CK and the infarct size, and promoted preservation of the mitochondrial structure. Moreover, it reduced tissue lactate content and preserved glycogen in order to prevent ischemia. The results showed greater Akt activation, accompanied by preservation of swelling and mitochondrial calcium retention capacity, as well as an increase in ATP synthesis capacity. These results were accompanied by an inhibition of GSK-3β, suggesting regulation of Akt on the opening of the mitochondrial permeability transition pore. All these beneficial effects exerted by acute treatment with EPO were prevented by W. The present study provided novel evidence that EPO not only enhances intrinsic activation of Akt during myocardial ischemia-reperfusion but also promotes GSK-3β inhibition, contributing to mitochondrial structure and function preservation.
期刊介绍:
The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia.
Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.