平面上多连通域上有理函数导数积分的估计

IF 0.8 3区 数学 Q2 MATHEMATICS
A. Baranov, I. Kayumov
{"title":"平面上多连通域上有理函数导数积分的估计","authors":"A. Baranov, I. Kayumov","doi":"10.1070/im9248","DOIUrl":null,"url":null,"abstract":"Abstract. We obtain estimates for integrals of derivatives of rational functions in multiply connected domains in the plane. A sharp order of the growth is found for the integral of the modulus of the derivative of a finite Blaschke product in the unit disk. We also extend the results of E.P. Dolzhenko about the integrals of the derivatives of rational functions to a wider class of domains, namely, to domains bounded by rectifiable curves without zero interior angles, and show the sharpness of the obtained results.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimates for integrals of derivatives of rational functions in multiply connected domains on the plane\",\"authors\":\"A. Baranov, I. Kayumov\",\"doi\":\"10.1070/im9248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We obtain estimates for integrals of derivatives of rational functions in multiply connected domains in the plane. A sharp order of the growth is found for the integral of the modulus of the derivative of a finite Blaschke product in the unit disk. We also extend the results of E.P. Dolzhenko about the integrals of the derivatives of rational functions to a wider class of domains, namely, to domains bounded by rectifiable curves without zero interior angles, and show the sharpness of the obtained results.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/im9248\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/im9248","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要得到了平面上多连通域上有理函数导数的积分估计。对于单位圆盘上有限Blaschke积的导数的模的积分,发现了增长的一个尖锐的次序。我们还将E.P. Dolzhenko关于有理函数导数积分的结果推广到更广泛的一类定义域,即以无内角的可整流曲线为界的定义域,并证明了所得结果的清晰性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimates for integrals of derivatives of rational functions in multiply connected domains on the plane
Abstract. We obtain estimates for integrals of derivatives of rational functions in multiply connected domains in the plane. A sharp order of the growth is found for the integral of the modulus of the derivative of a finite Blaschke product in the unit disk. We also extend the results of E.P. Dolzhenko about the integrals of the derivatives of rational functions to a wider class of domains, namely, to domains bounded by rectifiable curves without zero interior angles, and show the sharpness of the obtained results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信