{"title":"脆性材料外圆磨削的解析力和表面粗糙度模型","authors":"Ali Zahedi, B. Azarhoushang","doi":"10.1504/IJAT.2017.10007964","DOIUrl":null,"url":null,"abstract":"In this paper, an analytical approach is proposed for the modelling of ground surface and grinding forces in cylindrical grinding of ceramic materials. The model incorporates the near-actual distribution of cutting grains over the grinding wheel surface and a kinematic approach for the engagement of the grains with the workpiece surface per grinding parameters and conditions. To interpret the stochastic engagement of arbitrary grains with the workpiece, and to distinguish the dominant material removal mechanism, fracture mechanics of single-grain indentation is applied. The approach based on the fracture mechanics accounts for grain size and geometry and material properties. The results of a previously performed research on single-grain scratch tests are taken for interpreting force and workpiece surface characteristics. Without losing generality, the model was applied to a cylindrical plunge grinding of an alumina ceramic. The experiments show qualitative agreement of model predictions with the experimental force and ground workpiece topography.","PeriodicalId":39039,"journal":{"name":"International Journal of Abrasive Technology","volume":"8 1","pages":"68"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An analytical force and surface roughness model for cylindrical grinding of brittle materials\",\"authors\":\"Ali Zahedi, B. Azarhoushang\",\"doi\":\"10.1504/IJAT.2017.10007964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an analytical approach is proposed for the modelling of ground surface and grinding forces in cylindrical grinding of ceramic materials. The model incorporates the near-actual distribution of cutting grains over the grinding wheel surface and a kinematic approach for the engagement of the grains with the workpiece surface per grinding parameters and conditions. To interpret the stochastic engagement of arbitrary grains with the workpiece, and to distinguish the dominant material removal mechanism, fracture mechanics of single-grain indentation is applied. The approach based on the fracture mechanics accounts for grain size and geometry and material properties. The results of a previously performed research on single-grain scratch tests are taken for interpreting force and workpiece surface characteristics. Without losing generality, the model was applied to a cylindrical plunge grinding of an alumina ceramic. The experiments show qualitative agreement of model predictions with the experimental force and ground workpiece topography.\",\"PeriodicalId\":39039,\"journal\":{\"name\":\"International Journal of Abrasive Technology\",\"volume\":\"8 1\",\"pages\":\"68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Abrasive Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAT.2017.10007964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Abrasive Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAT.2017.10007964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
An analytical force and surface roughness model for cylindrical grinding of brittle materials
In this paper, an analytical approach is proposed for the modelling of ground surface and grinding forces in cylindrical grinding of ceramic materials. The model incorporates the near-actual distribution of cutting grains over the grinding wheel surface and a kinematic approach for the engagement of the grains with the workpiece surface per grinding parameters and conditions. To interpret the stochastic engagement of arbitrary grains with the workpiece, and to distinguish the dominant material removal mechanism, fracture mechanics of single-grain indentation is applied. The approach based on the fracture mechanics accounts for grain size and geometry and material properties. The results of a previously performed research on single-grain scratch tests are taken for interpreting force and workpiece surface characteristics. Without losing generality, the model was applied to a cylindrical plunge grinding of an alumina ceramic. The experiments show qualitative agreement of model predictions with the experimental force and ground workpiece topography.