m-二分Ramsey数BRm(H1,H2)

IF 0.5 4区 数学 Q3 MATHEMATICS
Yaser Rowshan
{"title":"m-二分Ramsey数BRm(H1,H2)","authors":"Yaser Rowshan","doi":"10.7151/dmgt.2477","DOIUrl":null,"url":null,"abstract":"Abstract In a (G1, G2) coloring of a graph G, every edge of G is in G1 or G2. For two bipartite graphs H1 and H2, the bipartite Ramsey number BR(H1, H2) is the least integer b ≥ 1, such that for every (G1, G2) coloring of the complete bipartite graph Kb,b, results in either H1 ⊆ G1 or H2 ⊆ G2. As another view, for bipartite graphs H1 and H2 and a positive integer m, the m-bipartite Ramsey number BRm(H1, H2) of H1 and H2 is the least integer n (n ≥ m) such that every subgraph G of Km,n results in H1 ⊆ G or H2 ⊆ Ḡ. The size of m-bipartite Ramsey number BRm(K2,2, K2,2), the size of m-bipartite Ramsey number BRm(K2,2, K3,3) and the size of m-bipartite Ramsey number BRm(K3,3, K3,3) have been computed in several articles up to now. In this paper we determine the exact value of BRm(K2,2, K4,4) for each m ≥ 2.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"0 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The m-Bipartite Ramsey Number BRm(H1, H2)\",\"authors\":\"Yaser Rowshan\",\"doi\":\"10.7151/dmgt.2477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In a (G1, G2) coloring of a graph G, every edge of G is in G1 or G2. For two bipartite graphs H1 and H2, the bipartite Ramsey number BR(H1, H2) is the least integer b ≥ 1, such that for every (G1, G2) coloring of the complete bipartite graph Kb,b, results in either H1 ⊆ G1 or H2 ⊆ G2. As another view, for bipartite graphs H1 and H2 and a positive integer m, the m-bipartite Ramsey number BRm(H1, H2) of H1 and H2 is the least integer n (n ≥ m) such that every subgraph G of Km,n results in H1 ⊆ G or H2 ⊆ Ḡ. The size of m-bipartite Ramsey number BRm(K2,2, K2,2), the size of m-bipartite Ramsey number BRm(K2,2, K3,3) and the size of m-bipartite Ramsey number BRm(K3,3, K3,3) have been computed in several articles up to now. In this paper we determine the exact value of BRm(K2,2, K4,4) for each m ≥ 2.\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":\"0 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2477\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2477","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在图G的(G1,G2)着色中,G的每条边都在G1或G2中。对于两个二分图H1和H2,二分拉姆齐数BR(H1,H2)是最小整数b≥1,使得对于完全二分图Kb,b的每一个(G1,G2)着色,都产生H1⊆G1或H2𕥄G2。另一种观点是,对于二分图H1和H2以及正整数m,H1和H2的m-二分拉姆齐数BRm(H1,H2)是最小整数n(n≥m),使得Km,n的每个子图G都产生H1⊆G或H2𕥄Ḡ。到目前为止,已经在几篇文章中计算了m二分拉姆齐数BRm(K2,2,K2,2)的大小、m二分Ramsey数BRm的大小(K2,2K3,3)和m二分拉姆齐数BRm的大小(K3,3K3,3。在本文中,我们确定了每m≥2时BRm(K2,2,K4,4)的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The m-Bipartite Ramsey Number BRm(H1, H2)
Abstract In a (G1, G2) coloring of a graph G, every edge of G is in G1 or G2. For two bipartite graphs H1 and H2, the bipartite Ramsey number BR(H1, H2) is the least integer b ≥ 1, such that for every (G1, G2) coloring of the complete bipartite graph Kb,b, results in either H1 ⊆ G1 or H2 ⊆ G2. As another view, for bipartite graphs H1 and H2 and a positive integer m, the m-bipartite Ramsey number BRm(H1, H2) of H1 and H2 is the least integer n (n ≥ m) such that every subgraph G of Km,n results in H1 ⊆ G or H2 ⊆ Ḡ. The size of m-bipartite Ramsey number BRm(K2,2, K2,2), the size of m-bipartite Ramsey number BRm(K2,2, K3,3) and the size of m-bipartite Ramsey number BRm(K3,3, K3,3) have been computed in several articles up to now. In this paper we determine the exact value of BRm(K2,2, K4,4) for each m ≥ 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信