{"title":"K3曲面Picard晶格的Weyl群的伽罗瓦不变部分","authors":"Wim Nijgh, Ronald van Luijk","doi":"10.1016/j.indag.2023.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>X</mi></math></span> denote a K3 surface over an arbitrary field <span><math><mi>k</mi></math></span>. Let <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> denote a separable closure of <span><math><mi>k</mi></math></span> and let <span><math><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> denote the base change of <span><math><mi>X</mi></math></span> to <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span>. Let <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup><mo>)</mo></mrow></mrow></math></span> denote the group of isometries of the lattices <span><math><mrow><mo>Pic</mo><mi>X</mi></mrow></math></span> and <span><math><mrow><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></mrow></math></span>, respectively. Let <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> denote the Galois invariant part of the Weyl group of <span><math><mrow><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></mrow></math></span>. One can show that each element in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> can be restricted to an element of <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>. The following question arises: <em>Is the image of the restriction map</em> <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>→</mo><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> <em>a normal subgroup of</em> <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> <em>for every K3 surface</em> <span><math><mi>X</mi></math></span><em>?</em> We show that the answer is negative by giving counterexamples over <span><math><mrow><mi>k</mi><mo>=</mo><mi>Q</mi></mrow></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357723000812/pdfft?md5=6dd74732aaf671c0aaa5195ba03e905f&pid=1-s2.0-S0019357723000812-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Galois-invariant part of the Weyl group of the Picard lattice of a K3 surface\",\"authors\":\"Wim Nijgh, Ronald van Luijk\",\"doi\":\"10.1016/j.indag.2023.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>X</mi></math></span> denote a K3 surface over an arbitrary field <span><math><mi>k</mi></math></span>. Let <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> denote a separable closure of <span><math><mi>k</mi></math></span> and let <span><math><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> denote the base change of <span><math><mi>X</mi></math></span> to <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span>. Let <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup><mo>)</mo></mrow></mrow></math></span> denote the group of isometries of the lattices <span><math><mrow><mo>Pic</mo><mi>X</mi></mrow></math></span> and <span><math><mrow><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></mrow></math></span>, respectively. Let <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> denote the Galois invariant part of the Weyl group of <span><math><mrow><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></mrow></math></span>. One can show that each element in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> can be restricted to an element of <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>. The following question arises: <em>Is the image of the restriction map</em> <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>→</mo><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> <em>a normal subgroup of</em> <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> <em>for every K3 surface</em> <span><math><mi>X</mi></math></span><em>?</em> We show that the answer is negative by giving counterexamples over <span><math><mrow><mi>k</mi><mo>=</mo><mi>Q</mi></mrow></math></span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0019357723000812/pdfft?md5=6dd74732aaf671c0aaa5195ba03e905f&pid=1-s2.0-S0019357723000812-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723000812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 X 表示任意域 k 上的 K3 曲面,让 ks 表示 k 的可分离闭包,让 Xs 表示 X 到 ks 的基变。让 O(PicX) 和 O(PicXs) 分别表示网格 PicX 和 PicXs 的等距群。让 RX 表示 PicXs 的韦尔群的伽罗瓦不变部分。我们可以证明,RX 中的每个元素都可以限制为 O(PicX)的一个元素。下面是一个问题:对于每个 K3 曲面 X,限制映射 RX→O(PicX) 的映像是 O(PicX) 的法线子群吗?我们通过给出 k=Q 上的反例来证明答案是否定的。
On the Galois-invariant part of the Weyl group of the Picard lattice of a K3 surface
Let denote a K3 surface over an arbitrary field . Let denote a separable closure of and let denote the base change of to . Let and denote the group of isometries of the lattices and , respectively. Let denote the Galois invariant part of the Weyl group of . One can show that each element in can be restricted to an element of . The following question arises: Is the image of the restriction mapa normal subgroup offor every K3 surface? We show that the answer is negative by giving counterexamples over .