{"title":"K3曲面Picard晶格的Weyl群的伽罗瓦不变部分","authors":"Wim Nijgh, Ronald van Luijk","doi":"10.1016/j.indag.2023.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>X</mi></math></span> denote a K3 surface over an arbitrary field <span><math><mi>k</mi></math></span>. Let <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> denote a separable closure of <span><math><mi>k</mi></math></span> and let <span><math><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> denote the base change of <span><math><mi>X</mi></math></span> to <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span>. Let <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup><mo>)</mo></mrow></mrow></math></span> denote the group of isometries of the lattices <span><math><mrow><mo>Pic</mo><mi>X</mi></mrow></math></span> and <span><math><mrow><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></mrow></math></span>, respectively. Let <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> denote the Galois invariant part of the Weyl group of <span><math><mrow><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></mrow></math></span>. One can show that each element in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> can be restricted to an element of <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>. The following question arises: <em>Is the image of the restriction map</em> <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>→</mo><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> <em>a normal subgroup of</em> <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> <em>for every K3 surface</em> <span><math><mi>X</mi></math></span><em>?</em> We show that the answer is negative by giving counterexamples over <span><math><mrow><mi>k</mi><mo>=</mo><mi>Q</mi></mrow></math></span>.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 4","pages":"Pages 610-621"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357723000812/pdfft?md5=6dd74732aaf671c0aaa5195ba03e905f&pid=1-s2.0-S0019357723000812-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Galois-invariant part of the Weyl group of the Picard lattice of a K3 surface\",\"authors\":\"Wim Nijgh, Ronald van Luijk\",\"doi\":\"10.1016/j.indag.2023.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>X</mi></math></span> denote a K3 surface over an arbitrary field <span><math><mi>k</mi></math></span>. Let <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> denote a separable closure of <span><math><mi>k</mi></math></span> and let <span><math><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> denote the base change of <span><math><mi>X</mi></math></span> to <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span>. Let <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup><mo>)</mo></mrow></mrow></math></span> denote the group of isometries of the lattices <span><math><mrow><mo>Pic</mo><mi>X</mi></mrow></math></span> and <span><math><mrow><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></mrow></math></span>, respectively. Let <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> denote the Galois invariant part of the Weyl group of <span><math><mrow><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></mrow></math></span>. One can show that each element in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> can be restricted to an element of <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>. The following question arises: <em>Is the image of the restriction map</em> <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>→</mo><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> <em>a normal subgroup of</em> <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> <em>for every K3 surface</em> <span><math><mi>X</mi></math></span><em>?</em> We show that the answer is negative by giving counterexamples over <span><math><mrow><mi>k</mi><mo>=</mo><mi>Q</mi></mrow></math></span>.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 4\",\"pages\":\"Pages 610-621\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0019357723000812/pdfft?md5=6dd74732aaf671c0aaa5195ba03e905f&pid=1-s2.0-S0019357723000812-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723000812\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000812","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 X 表示任意域 k 上的 K3 曲面,让 ks 表示 k 的可分离闭包,让 Xs 表示 X 到 ks 的基变。让 O(PicX) 和 O(PicXs) 分别表示网格 PicX 和 PicXs 的等距群。让 RX 表示 PicXs 的韦尔群的伽罗瓦不变部分。我们可以证明,RX 中的每个元素都可以限制为 O(PicX)的一个元素。下面是一个问题:对于每个 K3 曲面 X,限制映射 RX→O(PicX) 的映像是 O(PicX) 的法线子群吗?我们通过给出 k=Q 上的反例来证明答案是否定的。
On the Galois-invariant part of the Weyl group of the Picard lattice of a K3 surface
Let denote a K3 surface over an arbitrary field . Let denote a separable closure of and let denote the base change of to . Let and denote the group of isometries of the lattices and , respectively. Let denote the Galois invariant part of the Weyl group of . One can show that each element in can be restricted to an element of . The following question arises: Is the image of the restriction mapa normal subgroup offor every K3 surface? We show that the answer is negative by giving counterexamples over .
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.