K3曲面Picard晶格的Weyl群的伽罗瓦不变部分

Pub Date : 2024-07-01 DOI:10.1016/j.indag.2023.08.004
Wim Nijgh, Ronald van Luijk
{"title":"K3曲面Picard晶格的Weyl群的伽罗瓦不变部分","authors":"Wim Nijgh,&nbsp;Ronald van Luijk","doi":"10.1016/j.indag.2023.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>X</mi></math></span> denote a K3 surface over an arbitrary field <span><math><mi>k</mi></math></span>. Let <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> denote a separable closure of <span><math><mi>k</mi></math></span> and let <span><math><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> denote the base change of <span><math><mi>X</mi></math></span> to <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span>. Let <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup><mo>)</mo></mrow></mrow></math></span> denote the group of isometries of the lattices <span><math><mrow><mo>Pic</mo><mi>X</mi></mrow></math></span> and <span><math><mrow><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></mrow></math></span>, respectively. Let <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> denote the Galois invariant part of the Weyl group of <span><math><mrow><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></mrow></math></span>. One can show that each element in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> can be restricted to an element of <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>. The following question arises: <em>Is the image of the restriction map</em> <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>→</mo><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> <em>a normal subgroup of</em> <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> <em>for every K3 surface</em> <span><math><mi>X</mi></math></span><em>?</em> We show that the answer is negative by giving counterexamples over <span><math><mrow><mi>k</mi><mo>=</mo><mi>Q</mi></mrow></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357723000812/pdfft?md5=6dd74732aaf671c0aaa5195ba03e905f&pid=1-s2.0-S0019357723000812-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Galois-invariant part of the Weyl group of the Picard lattice of a K3 surface\",\"authors\":\"Wim Nijgh,&nbsp;Ronald van Luijk\",\"doi\":\"10.1016/j.indag.2023.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>X</mi></math></span> denote a K3 surface over an arbitrary field <span><math><mi>k</mi></math></span>. Let <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> denote a separable closure of <span><math><mi>k</mi></math></span> and let <span><math><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> denote the base change of <span><math><mi>X</mi></math></span> to <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span>. Let <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup><mo>)</mo></mrow></mrow></math></span> denote the group of isometries of the lattices <span><math><mrow><mo>Pic</mo><mi>X</mi></mrow></math></span> and <span><math><mrow><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></mrow></math></span>, respectively. Let <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> denote the Galois invariant part of the Weyl group of <span><math><mrow><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></mrow></math></span>. One can show that each element in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> can be restricted to an element of <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>. The following question arises: <em>Is the image of the restriction map</em> <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>→</mo><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> <em>a normal subgroup of</em> <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> <em>for every K3 surface</em> <span><math><mi>X</mi></math></span><em>?</em> We show that the answer is negative by giving counterexamples over <span><math><mrow><mi>k</mi><mo>=</mo><mi>Q</mi></mrow></math></span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0019357723000812/pdfft?md5=6dd74732aaf671c0aaa5195ba03e905f&pid=1-s2.0-S0019357723000812-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723000812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 X 表示任意域 k 上的 K3 曲面,让 ks 表示 k 的可分离闭包,让 Xs 表示 X 到 ks 的基变。让 O(PicX) 和 O(PicXs) 分别表示网格 PicX 和 PicXs 的等距群。让 RX 表示 PicXs 的韦尔群的伽罗瓦不变部分。我们可以证明,RX 中的每个元素都可以限制为 O(PicX)的一个元素。下面是一个问题:对于每个 K3 曲面 X,限制映射 RX→O(PicX) 的映像是 O(PicX) 的法线子群吗?我们通过给出 k=Q 上的反例来证明答案是否定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Galois-invariant part of the Weyl group of the Picard lattice of a K3 surface

Let X denote a K3 surface over an arbitrary field k. Let ks denote a separable closure of k and let Xs denote the base change of X to ks. Let O(PicX) and O(PicXs) denote the group of isometries of the lattices PicX and PicXs, respectively. Let RX denote the Galois invariant part of the Weyl group of PicXs. One can show that each element in RX can be restricted to an element of O(PicX). The following question arises: Is the image of the restriction map RXO(PicX) a normal subgroup of O(PicX) for every K3 surface X? We show that the answer is negative by giving counterexamples over k=Q.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信