利用容器筛选耐缺水甘蔗品种

IF 1.5 Q2 AGRONOMY
Misheck Chandiposha, G. E. Zharare, M. Nzima
{"title":"利用容器筛选耐缺水甘蔗品种","authors":"Misheck Chandiposha, G. E. Zharare, M. Nzima","doi":"10.1155/2023/5705785","DOIUrl":null,"url":null,"abstract":"The negative effects of water deficiency in sugarcane production caused by climate change on the productivity of sugarcane can be mitigated by drought tolerant varieties. A 14 × 2 factorial arrangement in completely randomised design replicated three times was used to screen 14 varieties for drought tolerance at the Zimbabwe Sugar Experiment Station (ZSAES). The first factor was the sugarcane varieties viz ZN1, ZN2, ZN3, ZN4, ZN5, ZN6, ZN7, ZN8, ZN9, ZN10, CP72–1312, NCo376, N14, and CP72–2086. The second factor comprised of two levels of irrigation, namely, well-watered (100% by volume) and water-deficit stressed (30% by volume). The parameters measured in this study which included tiller count, leaf SPAD index, total plant dry mass, photosynthetic rate, and leaf temperature were found not suitable for screening sugarcane for tolerance to water-deficit stress. Water-deficit stressed varieties ZN1, ZN8, ZN10, and N14 had the tallest stalks. Varieties CP72–2086, ZN2, ZN5, CP72–1312, ZN4, ZN6, and ZN9 were stunted, indicating that they were probably drought-sensitive. Leaf vapour pressure deficits of varieties ZN8, ZN10 and N14 were higher in water-stressed plants than in the well-watered ones. The vapour pressure deficit of well-watered NCo376 plants was higher than that of water-stressed plants. Furthermore, the stomatal conductance of water-stressed NCo376 plants was greater than that of the other varieties tested, showing more tolerance to drought. Based on stem height, stomatal conductance, vapour pressure deficit, transpiration rate and dry matter parameters measured in the present study, sugarcane varieties that are recommended to cane farmers in Zimbabwe when faced with drought are NCo376, ZN1, ZN8, ZN10 and ZN14.","PeriodicalId":13844,"journal":{"name":"International Journal of Agronomy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening of Sugarcane Varieties for Tolerance to Water Deficiency Using Containers\",\"authors\":\"Misheck Chandiposha, G. E. Zharare, M. Nzima\",\"doi\":\"10.1155/2023/5705785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The negative effects of water deficiency in sugarcane production caused by climate change on the productivity of sugarcane can be mitigated by drought tolerant varieties. A 14 × 2 factorial arrangement in completely randomised design replicated three times was used to screen 14 varieties for drought tolerance at the Zimbabwe Sugar Experiment Station (ZSAES). The first factor was the sugarcane varieties viz ZN1, ZN2, ZN3, ZN4, ZN5, ZN6, ZN7, ZN8, ZN9, ZN10, CP72–1312, NCo376, N14, and CP72–2086. The second factor comprised of two levels of irrigation, namely, well-watered (100% by volume) and water-deficit stressed (30% by volume). The parameters measured in this study which included tiller count, leaf SPAD index, total plant dry mass, photosynthetic rate, and leaf temperature were found not suitable for screening sugarcane for tolerance to water-deficit stress. Water-deficit stressed varieties ZN1, ZN8, ZN10, and N14 had the tallest stalks. Varieties CP72–2086, ZN2, ZN5, CP72–1312, ZN4, ZN6, and ZN9 were stunted, indicating that they were probably drought-sensitive. Leaf vapour pressure deficits of varieties ZN8, ZN10 and N14 were higher in water-stressed plants than in the well-watered ones. The vapour pressure deficit of well-watered NCo376 plants was higher than that of water-stressed plants. Furthermore, the stomatal conductance of water-stressed NCo376 plants was greater than that of the other varieties tested, showing more tolerance to drought. Based on stem height, stomatal conductance, vapour pressure deficit, transpiration rate and dry matter parameters measured in the present study, sugarcane varieties that are recommended to cane farmers in Zimbabwe when faced with drought are NCo376, ZN1, ZN8, ZN10 and ZN14.\",\"PeriodicalId\":13844,\"journal\":{\"name\":\"International Journal of Agronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5705785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5705785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

耐旱品种可以减轻气候变化引起的甘蔗生产缺水对甘蔗生产力的负面影响。A 14 × 在津巴布韦蔗糖试验站(ZSAES),采用重复三次的完全随机设计中的2因子排列对14个品种的抗旱性进行了筛选。第一个因素是甘蔗品种ZN1、ZN2、ZN3、ZN4、ZN5、ZN6、ZN7、ZN8、ZN9、ZN10、CP72–1312、NCo376、N14和CP72–2086。第二个因素包括两个灌溉水平,即充足灌溉(按体积计100%)和缺水胁迫(按体积计算30%)。本研究测得的分蘖数、叶片SPAD指数、植株总干质量、光合速率和叶片温度等参数不适合筛选甘蔗对缺水胁迫的耐受性。缺水胁迫品种ZN1、ZN8、ZN10和N14的茎秆最高。品种CP72–2086、ZN2、ZN5、CP72–1312、ZN4、ZN6和ZN9发育迟缓,表明它们可能对干旱敏感。ZN8、ZN10和N14品种在水分胁迫下的叶片蒸气压亏缺高于在水分充足的植株。水分充足的NCo376植物的蒸汽压亏缺高于水分胁迫的植物。此外,水分胁迫的NCo376植物的气孔导度大于其他品种,表现出更强的抗旱性。根据本研究测得的茎高、气孔导度、蒸汽压差、蒸腾速率和干物质参数,津巴布韦农民在面临干旱时推荐的甘蔗品种为NCo376、ZN1、ZN8、ZN10和ZN14。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screening of Sugarcane Varieties for Tolerance to Water Deficiency Using Containers
The negative effects of water deficiency in sugarcane production caused by climate change on the productivity of sugarcane can be mitigated by drought tolerant varieties. A 14 × 2 factorial arrangement in completely randomised design replicated three times was used to screen 14 varieties for drought tolerance at the Zimbabwe Sugar Experiment Station (ZSAES). The first factor was the sugarcane varieties viz ZN1, ZN2, ZN3, ZN4, ZN5, ZN6, ZN7, ZN8, ZN9, ZN10, CP72–1312, NCo376, N14, and CP72–2086. The second factor comprised of two levels of irrigation, namely, well-watered (100% by volume) and water-deficit stressed (30% by volume). The parameters measured in this study which included tiller count, leaf SPAD index, total plant dry mass, photosynthetic rate, and leaf temperature were found not suitable for screening sugarcane for tolerance to water-deficit stress. Water-deficit stressed varieties ZN1, ZN8, ZN10, and N14 had the tallest stalks. Varieties CP72–2086, ZN2, ZN5, CP72–1312, ZN4, ZN6, and ZN9 were stunted, indicating that they were probably drought-sensitive. Leaf vapour pressure deficits of varieties ZN8, ZN10 and N14 were higher in water-stressed plants than in the well-watered ones. The vapour pressure deficit of well-watered NCo376 plants was higher than that of water-stressed plants. Furthermore, the stomatal conductance of water-stressed NCo376 plants was greater than that of the other varieties tested, showing more tolerance to drought. Based on stem height, stomatal conductance, vapour pressure deficit, transpiration rate and dry matter parameters measured in the present study, sugarcane varieties that are recommended to cane farmers in Zimbabwe when faced with drought are NCo376, ZN1, ZN8, ZN10 and ZN14.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.30%
发文量
66
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信