{"title":"稀有有多稀有?常见程度如何?具有罕见或常见事件率的二元相关变量的经验问题","authors":"H. Woo, John P. Berns, Pol Solanelles","doi":"10.1177/10944281221083197","DOIUrl":null,"url":null,"abstract":"The use of logit and probit models when examining binary dependent variables including those in the form 0/1 (i.e., dummy variables), yes/no, and true/false (hereafter binary DVs) is commonplace. Yet, the appropriateness and effectiveness of such models are challenged when the event rate of a binary DV is rare or common. To better understand the impact on the field of strategy, we undertook a literature review and assessed recently published research in the Strategic Management Journal. We then utilized Monte Carlo simulations with results showing that as event rates become rarer or more common, issues including biased coefficients, standard error inflation, low statistical power to detect significant effects, and model convergence failure increasingly arise. In addition, small sample sizes amplified these empirical issues. Using a strategy example study, we also show how various analytic tools can lead to different findings when empirical models face an extreme event rate with small sample sizes. Based on our findings, we provide step-by-step guidance for strategy researchers going forward.","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":"1 1","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How Rare Is Rare? How Common Is Common? Empirical Issues Associated With Binary Dependent Variables With Rare Or Common Event Rates\",\"authors\":\"H. Woo, John P. Berns, Pol Solanelles\",\"doi\":\"10.1177/10944281221083197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of logit and probit models when examining binary dependent variables including those in the form 0/1 (i.e., dummy variables), yes/no, and true/false (hereafter binary DVs) is commonplace. Yet, the appropriateness and effectiveness of such models are challenged when the event rate of a binary DV is rare or common. To better understand the impact on the field of strategy, we undertook a literature review and assessed recently published research in the Strategic Management Journal. We then utilized Monte Carlo simulations with results showing that as event rates become rarer or more common, issues including biased coefficients, standard error inflation, low statistical power to detect significant effects, and model convergence failure increasingly arise. In addition, small sample sizes amplified these empirical issues. Using a strategy example study, we also show how various analytic tools can lead to different findings when empirical models face an extreme event rate with small sample sizes. Based on our findings, we provide step-by-step guidance for strategy researchers going forward.\",\"PeriodicalId\":19689,\"journal\":{\"name\":\"Organizational Research Methods\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organizational Research Methods\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/10944281221083197\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10944281221083197","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
How Rare Is Rare? How Common Is Common? Empirical Issues Associated With Binary Dependent Variables With Rare Or Common Event Rates
The use of logit and probit models when examining binary dependent variables including those in the form 0/1 (i.e., dummy variables), yes/no, and true/false (hereafter binary DVs) is commonplace. Yet, the appropriateness and effectiveness of such models are challenged when the event rate of a binary DV is rare or common. To better understand the impact on the field of strategy, we undertook a literature review and assessed recently published research in the Strategic Management Journal. We then utilized Monte Carlo simulations with results showing that as event rates become rarer or more common, issues including biased coefficients, standard error inflation, low statistical power to detect significant effects, and model convergence failure increasingly arise. In addition, small sample sizes amplified these empirical issues. Using a strategy example study, we also show how various analytic tools can lead to different findings when empirical models face an extreme event rate with small sample sizes. Based on our findings, we provide step-by-step guidance for strategy researchers going forward.
期刊介绍:
Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.