利用类不平衡的过采样技术提高图像样本分割中的集成学习性能

Arie Nugroho, M. A. Soeleman, R. A. Pramunendar, Affandy Affandy, Aris Nurhindarto
{"title":"利用类不平衡的过采样技术提高图像样本分割中的集成学习性能","authors":"Arie Nugroho, M. A. Soeleman, R. A. Pramunendar, Affandy Affandy, Aris Nurhindarto","doi":"10.25126/jtiik.20241046831","DOIUrl":null,"url":null,"abstract":"Perkembangan teknologi dan gaya hidup manusia yang semakin tinggi menghasilkan data-data yang berlimpah. Data-data tersebut dapat berbentuk data yang terstruktur dan tidak terstruktur. Data gambar termasuk dalam data yang tidak terstruktur. Aktifitas dan objek yang terekam dalam suatu gambar beraneka ragam. Secara normal, mata manusia dapat dengan mudah membedakan antara foreground dan background dari suatu gambar, tetapi komputer membutuhkan pembelajaran dalam membedakan keduanya. Segmentasi gambar adalah salah satu bidang dalam computer vision yang membahas bagaimana cara komputer mempelajari dan mengenali segmen dari suatu gambar sesuai label yang ditentukan. Dalam kenyataannya banyak data yang mempunyai class atau label yang tidak seimbang, tentunya akan mempengaruhi tingkat akurasi dari suatu prediksi. Dalam riset ini membahas bagaimana meningkatkan akurasi segmentasi semantik gambar pada metode ensemble learning untuk menangani masalah data yang tidak seimbang dalam segmentasi gambar. Teknik yang digunakan adalah sintetis oversampling sehingga menghasilkan data yang seimbang dan akurasi yang tinggi. Metode ensemble learning yang digunakan adalah Random Forest dan Light Gradien Boosting Machine (LGBM). Dengan menggunakan dataset Penn-Fudan Database for Pedestrian yang mengandung imbalanced class. Penggunaan teknik sintetis oversampling dapat memperbaikki tingkat akurasi pada class minoritas. Pada algoritma random forest mengalami peningkatan akurasi sebesar 37 % sedangkan pada algoritma LGBM meningkat sebesar 41 %. AbstractThe development of technology and the increasingly high lifestyle of humans produce abundant data. These data can be in the form of structured and unstructured data. Image data is included in unstructured data. The activities and objects recorded in a picture are varied. Normally, the human eye can easily distinguish between the foreground and background of an image, but computers need learning to distinguish between the two. Image segmentation is one of the fields in computer vision that discusses how computers learn and recognize segments of an image according to specified labels. In reality, a lot of data has unbalanced classes or labels, of course, it will affect the accuracy of a prediction. This research discusses how to improve the accuracy of image semantic segmentation in the ensemble learning method to deal with the problem of unbalanced data in image segmentation. The technique used is synthetic oversampling so as to produce balanced data and high accuracy. The ensemble learning methods used are Random Forest and Light Gradient Boosting Machine (LGBM). By using the Penn-Fudan Database for Pedestrian dataset which contains a imbalanced class. The use of synthetic oversampling techniques can improve the level of accuracy in minority classes. The random forest algorithm experienced an increase in accuracy by 37% while the LGBM algorithm increased by 41%.","PeriodicalId":32501,"journal":{"name":"Jurnal Teknologi Informasi dan Ilmu Komputer","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peningkatan Performa Ensemble Learning pada Segmentasi Semantik Gambar dengan Teknik Oversampling untuk Class Imbalance\",\"authors\":\"Arie Nugroho, M. A. Soeleman, R. A. Pramunendar, Affandy Affandy, Aris Nurhindarto\",\"doi\":\"10.25126/jtiik.20241046831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perkembangan teknologi dan gaya hidup manusia yang semakin tinggi menghasilkan data-data yang berlimpah. Data-data tersebut dapat berbentuk data yang terstruktur dan tidak terstruktur. Data gambar termasuk dalam data yang tidak terstruktur. Aktifitas dan objek yang terekam dalam suatu gambar beraneka ragam. Secara normal, mata manusia dapat dengan mudah membedakan antara foreground dan background dari suatu gambar, tetapi komputer membutuhkan pembelajaran dalam membedakan keduanya. Segmentasi gambar adalah salah satu bidang dalam computer vision yang membahas bagaimana cara komputer mempelajari dan mengenali segmen dari suatu gambar sesuai label yang ditentukan. Dalam kenyataannya banyak data yang mempunyai class atau label yang tidak seimbang, tentunya akan mempengaruhi tingkat akurasi dari suatu prediksi. Dalam riset ini membahas bagaimana meningkatkan akurasi segmentasi semantik gambar pada metode ensemble learning untuk menangani masalah data yang tidak seimbang dalam segmentasi gambar. Teknik yang digunakan adalah sintetis oversampling sehingga menghasilkan data yang seimbang dan akurasi yang tinggi. Metode ensemble learning yang digunakan adalah Random Forest dan Light Gradien Boosting Machine (LGBM). Dengan menggunakan dataset Penn-Fudan Database for Pedestrian yang mengandung imbalanced class. Penggunaan teknik sintetis oversampling dapat memperbaikki tingkat akurasi pada class minoritas. Pada algoritma random forest mengalami peningkatan akurasi sebesar 37 % sedangkan pada algoritma LGBM meningkat sebesar 41 %. AbstractThe development of technology and the increasingly high lifestyle of humans produce abundant data. These data can be in the form of structured and unstructured data. Image data is included in unstructured data. The activities and objects recorded in a picture are varied. Normally, the human eye can easily distinguish between the foreground and background of an image, but computers need learning to distinguish between the two. Image segmentation is one of the fields in computer vision that discusses how computers learn and recognize segments of an image according to specified labels. In reality, a lot of data has unbalanced classes or labels, of course, it will affect the accuracy of a prediction. This research discusses how to improve the accuracy of image semantic segmentation in the ensemble learning method to deal with the problem of unbalanced data in image segmentation. The technique used is synthetic oversampling so as to produce balanced data and high accuracy. The ensemble learning methods used are Random Forest and Light Gradient Boosting Machine (LGBM). By using the Penn-Fudan Database for Pedestrian dataset which contains a imbalanced class. The use of synthetic oversampling techniques can improve the level of accuracy in minority classes. The random forest algorithm experienced an increase in accuracy by 37% while the LGBM algorithm increased by 41%.\",\"PeriodicalId\":32501,\"journal\":{\"name\":\"Jurnal Teknologi Informasi dan Ilmu Komputer\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi Informasi dan Ilmu Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25126/jtiik.20241046831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi dan Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25126/jtiik.20241046831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不断发展的技术和人类生活方式提供了大量的数据。它们可以以结构化和非结构化的数据形式出现。图像数据属于非结构化数据。记录在图像中的活动和物体是多样的。正常情况下,人类的眼睛可以很容易地区分图像的前场和背景,但计算机需要学习如何区分它们。分割图像是计算机视觉的一个领域,讨论计算机如何根据指定的标签学习和识别图像的片段。在现实中,许多数据具有不平衡的类别或标签,这肯定会影响预测的准确性。本研究讨论了如何增加图片分割的语义精确度,以解决图像分割中不平衡的数据问题。使用的技术是合成抽样,从而产生平衡的数据和高准确性。使用的组合学习方法是随机的森林和轻重力助推器机(LGBM)。通过使用penn- fuand数据库增强级。使用精装合成技术可以提高少数班的准确率。在随机森林算法中,准确性增加了37%,而LGBM算法增加了41 %。人类生产大量数据的方式。这些数据可以在编纂和解构数据的形式中。数据意象包含在未编纂的数据中。活动和对象记录在一幅画中是不同的。正常情况下,人类的眼睛可以很容易地在前地和形象之间移动,但计算机需要学会在两者之间移动。表象是计算机愿景中的一个领域,这揭示了计算机是如何学习和识别单个图形的片段。在现实中,很多数据的坡度或坡度都达到了预测的准确程度。这一研究揭示了如何孕育有效学习方法中关于未平衡数据形象形象的准确描述。所使用的技术是合成的,作为数据的平衡和高度计算的修正。可用的学习方法是随机的森林和光助推器机。通过使用penns - fudan数据库的运行数据,这些数据提供了一个反扫描类。合成超模技术的使用可以达到最小级的准确程度。随机森林算法的计算增加了37%,而LGBM算法增加了41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peningkatan Performa Ensemble Learning pada Segmentasi Semantik Gambar dengan Teknik Oversampling untuk Class Imbalance
Perkembangan teknologi dan gaya hidup manusia yang semakin tinggi menghasilkan data-data yang berlimpah. Data-data tersebut dapat berbentuk data yang terstruktur dan tidak terstruktur. Data gambar termasuk dalam data yang tidak terstruktur. Aktifitas dan objek yang terekam dalam suatu gambar beraneka ragam. Secara normal, mata manusia dapat dengan mudah membedakan antara foreground dan background dari suatu gambar, tetapi komputer membutuhkan pembelajaran dalam membedakan keduanya. Segmentasi gambar adalah salah satu bidang dalam computer vision yang membahas bagaimana cara komputer mempelajari dan mengenali segmen dari suatu gambar sesuai label yang ditentukan. Dalam kenyataannya banyak data yang mempunyai class atau label yang tidak seimbang, tentunya akan mempengaruhi tingkat akurasi dari suatu prediksi. Dalam riset ini membahas bagaimana meningkatkan akurasi segmentasi semantik gambar pada metode ensemble learning untuk menangani masalah data yang tidak seimbang dalam segmentasi gambar. Teknik yang digunakan adalah sintetis oversampling sehingga menghasilkan data yang seimbang dan akurasi yang tinggi. Metode ensemble learning yang digunakan adalah Random Forest dan Light Gradien Boosting Machine (LGBM). Dengan menggunakan dataset Penn-Fudan Database for Pedestrian yang mengandung imbalanced class. Penggunaan teknik sintetis oversampling dapat memperbaikki tingkat akurasi pada class minoritas. Pada algoritma random forest mengalami peningkatan akurasi sebesar 37 % sedangkan pada algoritma LGBM meningkat sebesar 41 %. AbstractThe development of technology and the increasingly high lifestyle of humans produce abundant data. These data can be in the form of structured and unstructured data. Image data is included in unstructured data. The activities and objects recorded in a picture are varied. Normally, the human eye can easily distinguish between the foreground and background of an image, but computers need learning to distinguish between the two. Image segmentation is one of the fields in computer vision that discusses how computers learn and recognize segments of an image according to specified labels. In reality, a lot of data has unbalanced classes or labels, of course, it will affect the accuracy of a prediction. This research discusses how to improve the accuracy of image semantic segmentation in the ensemble learning method to deal with the problem of unbalanced data in image segmentation. The technique used is synthetic oversampling so as to produce balanced data and high accuracy. The ensemble learning methods used are Random Forest and Light Gradient Boosting Machine (LGBM). By using the Penn-Fudan Database for Pedestrian dataset which contains a imbalanced class. The use of synthetic oversampling techniques can improve the level of accuracy in minority classes. The random forest algorithm experienced an increase in accuracy by 37% while the LGBM algorithm increased by 41%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信