逆高斯曲率流与Orlicz Minkowski问题

IF 0.9 3区 数学 Q2 MATHEMATICS
Bin Chen, Jingshi Cui, P. Zhao
{"title":"逆高斯曲率流与Orlicz Minkowski问题","authors":"Bin Chen, Jingshi Cui, P. Zhao","doi":"10.1515/agms-2022-0146","DOIUrl":null,"url":null,"abstract":"Abstract Liu and Lu [27] investigated a generalized Gauss curvature flow and obtained an even solution to the dual Orlicz-Minkowski problem under some appropriate assumptions. The present paper investigates a inverse Gauss curvature flow, and achieves the long-time existence and convergence of this flow via a different C0-estimate technique under weaker conditions. As an application of this inverse Gauss curvature flow, the present paper first arrives at a non-even smooth solution to the Orlicz Minkowski problem.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"10 1","pages":"330 - 343"},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Gauss Curvature Flows and Orlicz Minkowski Problem\",\"authors\":\"Bin Chen, Jingshi Cui, P. Zhao\",\"doi\":\"10.1515/agms-2022-0146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Liu and Lu [27] investigated a generalized Gauss curvature flow and obtained an even solution to the dual Orlicz-Minkowski problem under some appropriate assumptions. The present paper investigates a inverse Gauss curvature flow, and achieves the long-time existence and convergence of this flow via a different C0-estimate technique under weaker conditions. As an application of this inverse Gauss curvature flow, the present paper first arrives at a non-even smooth solution to the Orlicz Minkowski problem.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"10 1\",\"pages\":\"330 - 343\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2022-0146\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0146","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Liu和Lu研究了广义高斯曲率流,在适当的假设条件下得到了对偶Orlicz-Minkowski问题的偶解。本文研究了一种反高斯曲率流,在较弱的条件下,通过一种不同的c0估计技术,得到了该流的长时间存在性和收敛性。作为逆高斯曲率流的一个应用,本文首先得到了Orlicz Minkowski问题的非均匀光滑解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Gauss Curvature Flows and Orlicz Minkowski Problem
Abstract Liu and Lu [27] investigated a generalized Gauss curvature flow and obtained an even solution to the dual Orlicz-Minkowski problem under some appropriate assumptions. The present paper investigates a inverse Gauss curvature flow, and achieves the long-time existence and convergence of this flow via a different C0-estimate technique under weaker conditions. As an application of this inverse Gauss curvature flow, the present paper first arrives at a non-even smooth solution to the Orlicz Minkowski problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信