{"title":"用各种最小有理切线来表征辛格拉斯曼","authors":"Jun-Muk Hwang, Qifeng Li","doi":"10.4310/jdg/1632506422","DOIUrl":null,"url":null,"abstract":"We show that if the variety of minimal rational tangents (VMRT) of a uniruled projective manifold at a general point is projectively equivalent to that of a symplectic or an odd-symplectic Grassmannian, the germ of a general minimal rational curve is biholomorphic to the germ of a general line in a presymplectic Grassmannian. As an application, we characterize symplectic and odd-symplectic Grassmannians, among Fano manifolds of Picard number 1, by their VMRT at a general point and prove their rigidity under global K\\\"ahler deformation. Analogous results for $G/P$ associated with a long root were obtained by Mok and Hong-Hwang a decade ago by using Tanaka theory for parabolic geometries. When $G/P$ is associated with a short root, for which symplectic Grassmannians are most prominent examples, the associated local differential geometric structure is no longer a parabolic geometry and standard machinery of Tanaka theory cannot be applied because of several degenerate features. To overcome the difficulty, we show that Tanaka's method can be generalized to a setting much broader than parabolic geometries, by assuming a pseudo-concavity type condition that certain vector bundles arising from Spencer complexes have no nonzero sections. The pseudo-concavity type condition is checked by exploiting geometry of minimal rational curves.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Characterizing symplectic Grassmannians by varieties of minimal rational tangents\",\"authors\":\"Jun-Muk Hwang, Qifeng Li\",\"doi\":\"10.4310/jdg/1632506422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that if the variety of minimal rational tangents (VMRT) of a uniruled projective manifold at a general point is projectively equivalent to that of a symplectic or an odd-symplectic Grassmannian, the germ of a general minimal rational curve is biholomorphic to the germ of a general line in a presymplectic Grassmannian. As an application, we characterize symplectic and odd-symplectic Grassmannians, among Fano manifolds of Picard number 1, by their VMRT at a general point and prove their rigidity under global K\\\\\\\"ahler deformation. Analogous results for $G/P$ associated with a long root were obtained by Mok and Hong-Hwang a decade ago by using Tanaka theory for parabolic geometries. When $G/P$ is associated with a short root, for which symplectic Grassmannians are most prominent examples, the associated local differential geometric structure is no longer a parabolic geometry and standard machinery of Tanaka theory cannot be applied because of several degenerate features. To overcome the difficulty, we show that Tanaka's method can be generalized to a setting much broader than parabolic geometries, by assuming a pseudo-concavity type condition that certain vector bundles arising from Spencer complexes have no nonzero sections. The pseudo-concavity type condition is checked by exploiting geometry of minimal rational curves.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1632506422\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1632506422","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Characterizing symplectic Grassmannians by varieties of minimal rational tangents
We show that if the variety of minimal rational tangents (VMRT) of a uniruled projective manifold at a general point is projectively equivalent to that of a symplectic or an odd-symplectic Grassmannian, the germ of a general minimal rational curve is biholomorphic to the germ of a general line in a presymplectic Grassmannian. As an application, we characterize symplectic and odd-symplectic Grassmannians, among Fano manifolds of Picard number 1, by their VMRT at a general point and prove their rigidity under global K\"ahler deformation. Analogous results for $G/P$ associated with a long root were obtained by Mok and Hong-Hwang a decade ago by using Tanaka theory for parabolic geometries. When $G/P$ is associated with a short root, for which symplectic Grassmannians are most prominent examples, the associated local differential geometric structure is no longer a parabolic geometry and standard machinery of Tanaka theory cannot be applied because of several degenerate features. To overcome the difficulty, we show that Tanaka's method can be generalized to a setting much broader than parabolic geometries, by assuming a pseudo-concavity type condition that certain vector bundles arising from Spencer complexes have no nonzero sections. The pseudo-concavity type condition is checked by exploiting geometry of minimal rational curves.
期刊介绍:
Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.