环境监测数据挖掘的多元统计方法基础硕士导论

IF 0.7 Q3 MULTIDISCIPLINARY SCIENCES
V. Simeonov
{"title":"环境监测数据挖掘的多元统计方法基础硕士导论","authors":"V. Simeonov","doi":"10.2478/cdem-2020-0002","DOIUrl":null,"url":null,"abstract":"Abstract The present introductory course of lectures summarizes the principles and algorithms of several widely used multivariate statistical methods: cluster analysis, principal components analysis, principal components regression, N-way principal components analysis, partial least squares regression and self-organizing maps with respect to their possible application in intelligent analysis, classification, modelling and interpretation to environmental monitoring data. The target group of possible users is master program students (environmental chemistry, analytical chemistry, environmental modelling and risk assessment etc.).","PeriodicalId":41079,"journal":{"name":"Chemistry-Didactics-Ecology-Metrology","volume":"25 1","pages":"35 - 56"},"PeriodicalIF":0.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Basic Multivariate Statistical Methods for Environmental Monitoring Data Mining: Introductory Course for Master Students\",\"authors\":\"V. Simeonov\",\"doi\":\"10.2478/cdem-2020-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present introductory course of lectures summarizes the principles and algorithms of several widely used multivariate statistical methods: cluster analysis, principal components analysis, principal components regression, N-way principal components analysis, partial least squares regression and self-organizing maps with respect to their possible application in intelligent analysis, classification, modelling and interpretation to environmental monitoring data. The target group of possible users is master program students (environmental chemistry, analytical chemistry, environmental modelling and risk assessment etc.).\",\"PeriodicalId\":41079,\"journal\":{\"name\":\"Chemistry-Didactics-Ecology-Metrology\",\"volume\":\"25 1\",\"pages\":\"35 - 56\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry-Didactics-Ecology-Metrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cdem-2020-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry-Didactics-Ecology-Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cdem-2020-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

摘要本课程的介绍性课程总结了几种广泛使用的多元统计方法的原理和算法:聚类分析、主成分分析、主成份回归、N向主成分分析,偏最小二乘回归和自组织映射,以及它们在智能分析中的可能应用,环境监测数据的分类、建模和解释。可能用户的目标群体是硕士项目学生(环境化学、分析化学、环境建模和风险评估等)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Basic Multivariate Statistical Methods for Environmental Monitoring Data Mining: Introductory Course for Master Students
Abstract The present introductory course of lectures summarizes the principles and algorithms of several widely used multivariate statistical methods: cluster analysis, principal components analysis, principal components regression, N-way principal components analysis, partial least squares regression and self-organizing maps with respect to their possible application in intelligent analysis, classification, modelling and interpretation to environmental monitoring data. The target group of possible users is master program students (environmental chemistry, analytical chemistry, environmental modelling and risk assessment etc.).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry-Didactics-Ecology-Metrology
Chemistry-Didactics-Ecology-Metrology MULTIDISCIPLINARY SCIENCES-
CiteScore
1.50
自引率
50.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信